Skip to main content

Advertisement

Log in

Ultrafast relaxation dynamics in a polymer: fullerene blend for organic photovoltaics probed by two-dimensional electronic spectroscopy

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ultrafast charge transfer from a photoexcited donor to an acceptor moiety is at the heart of the energy conversion in organic photovoltaics (OPVs). Efficient charge transfer on ultrafast, sub-100-fs timescales has been reported in many OPV materials. Yet at present, the elementary mechanisms underlying this process in OPV materials, in particular the role of coupled electronic and nuclear motion for the transfer dynamics and yield, are still unclear. Here, we use ultrafast two-dimensional electronic spectroscopy (2DES) to investigate vibronic couplings in the initial, light-induced charge separation dynamics in a blend of poly-3-hexyl-thiophene (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), a prototypical OPV system. At early times, we observe a distinct breakup of the unstructured linear spectrum into a series of well-resolved vibronic resonances. A comparison to 2DES spectra of pure P3HT suggests that these resonances arise from the vibronic coupling between donor states of the polymer and charge-separated states involving the PCBM acceptors. We identify new, short-lived diagonal peaks, decaying substantially within only about 20–30 fs and lacking a well-resolved cross-peak structure. We argue that these unexpected dynamics likely arise from strong anharmonic couplings to several vibrational modes. One possibility to explain the rapid decay of the blend peaks would be passing of the photoexcited wavepacket through a conical intersection. Our results suggest that nonadiabatic dynamics on multidimensional potential energy surfaces (PESs) might be highly relevant for the initial steps of light-induced charge separation in organic materials. Since theoretical investigations of vibronically-assisted dynamics in such complex organic systems are just emerging, we hope that our results will stimulate further experimental and theoretical work on the role of such dynamics in artificial energy conversion materials. To this end, coherent multidimensional spectroscopy might be a key experimental tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Barford, Electronic and Optical Properties of Conjugated Polymers (Clarendon Press, Oxford, 2005)

  2. J.L. Bredas, G.B. Street, Acc. Chem. Res. 18, 309 (1985)

    Google Scholar 

  3. F.C. Spano, Annu. Rev. Phys. Chem. 57, 217 (2006)

    ADS  Google Scholar 

  4. S. Kilina, D. Kilin, S. Tretiak, Chem. Rev. 115, 5929 (2015)

    Google Scholar 

  5. O.G. Reid et al., Chem. Mater. 26, 561 (2014)

    Google Scholar 

  6. R. Tempelaar et al., J. Phys. Chem. B 117, 457 (2013)

    Google Scholar 

  7. C. Cohen-Tannoudji, F. Laloe, B. Diu, Quantum Mechanics (Wiley, New York, 1977)

  8. A.P. Shreve et al., Phys. Rev. Lett. 98, 037405 (2007)

    ADS  Google Scholar 

  9. J. Clark et al., Phys. Rev. Lett. 98, 206406 (2007)

    ADS  Google Scholar 

  10. F.C. Spano, J. Chem. Phys. 122, 234701 (2005)

    ADS  Google Scholar 

  11. H. Köppel, W. Domcke, L.S. Cederbaum, Advances in Chemical Physics (John Wiley & Sons, Inc., United States, 2007), p. 5912

  12. W. Domcke, D.R. Yarkony, Annu. Rev. Phys. Chem. 63, 325 (2012)

    ADS  Google Scholar 

  13. K. Hader et al., J. Chem. Phys. 146, 074304 (2017)

    ADS  Google Scholar 

  14. E. Riedle et al., Chem. Phys. Lett. 683, 128 (2017)

    ADS  Google Scholar 

  15. S.K. Min et al., J. Phys. Chem. Lett. 8, 3048 (2017)

    Google Scholar 

  16. J. Ehrmaier et al., J. Chem. Phys. 146, 124304 (2017)

    ADS  Google Scholar 

  17. J. Conyard et al., Nat. Chem. 4, 547 (2012)

    Google Scholar 

  18. D. Polli et al., Nature 467, 440 (2010)

    ADS  Google Scholar 

  19. R.A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964)

    ADS  Google Scholar 

  20. A.A. Bakulin et al., Science 335, 1340 (2012)

    ADS  Google Scholar 

  21. S. Gélinas et al., Science 343, 512 (2014)

    ADS  Google Scholar 

  22. G. Grancini et al., Nat. Mater. 12, 29 (2012)

    ADS  Google Scholar 

  23. A.E. Jailaubekov et al., Nat. Mater. 12, 66 (2013)

    ADS  Google Scholar 

  24. S.M. Falke et al., Science 344, 1001 (2014)

    ADS  Google Scholar 

  25. Y. Song et al., Nat. Commun. 5, 4933 (2014)

    ADS  Google Scholar 

  26. A. De Sio et al., Nat. Commun. 7, 13742 (2016)

    ADS  Google Scholar 

  27. G. Li, R. Zhu, Y. Yang, Nat. Photonics 6, 153 (2012)

    ADS  Google Scholar 

  28. M. Polkehn, H. Tamura, I. Burghardt, J. Phys. B: At. Mol. Opt. Phys. 51, 014003 (2018)

    ADS  Google Scholar 

  29. S. Joseph, M.K. Ravva, J.-L. Bredas, J. Phys. Chem. Lett. 8, 5171 (2017)

    Google Scholar 

  30. H. Tamura, I. Burghardt, J. Am. Chem. Soc. 135, 16364 (2013)

    Google Scholar 

  31. H. Tamura, I. Burghardt, J. Phys. Chem. C 117, 15020 (2013)

    Google Scholar 

  32. M. Polkehn et al., Int. J. Quantum Chem. 118, e25502 (2018)

    Google Scholar 

  33. A. De Sio, C. Lienau, Phys. Chem. Chem. Phys. 19, 18813 (2017)

    Google Scholar 

  34. T. Nelson et al., J. Phys. Chem. Lett. 8, 3020 (2017)

    Google Scholar 

  35. J. Réhault et al., Rev. Sci. Instrum. 85, 123107 (2014)

    ADS  Google Scholar 

  36. D. Brida, C. Manzoni, G. Cerullo, Opt. Lett. 37, 3027 (2012)

    ADS  Google Scholar 

  37. F.D. Fuller, J.P. Ogilvie, Annu. Rev. Phys. Chem. 66, 667 (2015)

    ADS  Google Scholar 

  38. F.C. Spano et al., J. Chem. Phys. 130, 074904 (2009)

    ADS  Google Scholar 

  39. J. Guo et al., J. Am. Chem. Soc. 131, 16869 (2009)

    Google Scholar 

  40. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)

  41. R.M. Hochstrasser, Proc. Nat. Acad. Sci. 104, 14190 (2007)

    ADS  Google Scholar 

  42. Y. Song et al., J. Chem. Phys. 142, 212410 (2015)

    ADS  Google Scholar 

  43. S. Falke et al., J. Raman Spectrosc. 42, 1897 (2011)

    ADS  Google Scholar 

  44. R.F. Loring, Y.J. Yan, S. Mukamel, J. Chem. Phys. 87, 5840 (1987)

    ADS  Google Scholar 

  45. F.V.A. Camargo et al., J. Phys. Chem. B 119, 14660 (2015)

    Google Scholar 

  46. I.-W. Hwang, D. Moses, A.J. Heeger, J. Phys. Chem. C 112, 4350 (2008)

    Google Scholar 

  47. J. Piris et al., J. Phys. Chem. C 113, 14500 (2009)

    Google Scholar 

  48. J. Guo et al., J. Am. Chem. Soc. 132, 6154 (2010)

    Google Scholar 

  49. I.A. Howard et al., J. Am. Chem. Soc. 132, 14866 (2010)

    Google Scholar 

  50. D.G. Cooke, F.C. Krebs, P.U. Jepsen, Phys. Rev. Lett. 108, 056603 (2012)

    ADS  Google Scholar 

  51. A. Anda, D. Abramavicius, T. Hansen, Phys. Chem. Chem. Phys. 20, 1642 (2018)

    Google Scholar 

  52. A. Galestian Pour et al., Phys. Chem. Chem. Phys. 19, 24752 (2017)

    Google Scholar 

  53. G.A. Worth, L.S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004)

    ADS  Google Scholar 

  54. P.J.M. Johnson et al., J. Phys. Chem. B 121, 4040 (2017)

    Google Scholar 

  55. C.A. Rozzi et al., Nat. Commun. 4, 2603 (2013)

    Google Scholar 

  56. H. Tamura et al., J. Chem. Phys. 137, 22A540 (2012)

    Google Scholar 

  57. M. Huix-Rotllant, H. Tamura, I. Burghardt, J. Phys. Chem. Lett. 6, 1702 (2015)

    Google Scholar 

  58. M. Kowalewski et al., Chem. Rev. 117, 12165 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonietta De Sio or Christoph Lienau.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sio, A., Camargo, F.V.d.A., Winte, K. et al. Ultrafast relaxation dynamics in a polymer: fullerene blend for organic photovoltaics probed by two-dimensional electronic spectroscopy. Eur. Phys. J. B 91, 236 (2018). https://doi.org/10.1140/epjb/e2018-90216-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90216-4

Navigation