Skip to main content
Log in

Exact partition potential for model systems of interacting electrons in 1-D

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We find the numerically exact partition potential for 1-D systems of interacting electrons designed to model diatomic molecules. At integer fragment occupations, the kinetic contribution to the partition potential develops sharp features in the internuclear region that nearly cancel corresponding features of exchange-correlation. They occur at locations that coincide with those of well-known features of the underlying molecular Kohn–Sham potential. For non-integer fragment occupations, we demonstrate that the fragment energy gaps determine the kinetic part of the partition potential. Our results highlight the importance of non-additive noninteracting kinetic and exchange-correlation energy approximations in density-embedding methods at large internuclear separations and the importance of non-additive noninteracting kinetic energy approximations at all separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Parr, W. Yang,Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  2. P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 129, 2010 (2000)

    Google Scholar 

  3. P. Geerlings, F.D. Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

    Article  Google Scholar 

  4. M. Hellgren, E.K.U. Gross, J. Chem. Phys. 136, 114102 (2012)

    Article  ADS  Google Scholar 

  5. M.H. Cohen, A. Wasserman, J. Phys. Chem. A 111, 2229 (2007)

    Article  Google Scholar 

  6. J.P. Perdew, R.G. Parr, M. Levy, J.J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  7. M.H. Cohen, A. Wasserman, J. Stat. Phys. 125, 1121 (2006)

    Article  ADS  Google Scholar 

  8. J. Nafziger, A. Wasserman, J. Phys. Chem. A 118, 7623 (2014)

    Article  Google Scholar 

  9. J. Nafziger, A. Wasserman, J. Chem. Phys. 143, 234105 (2015)

    Article  ADS  Google Scholar 

  10. J. Nafziger, K. Jiang, A. Wasserman, J. Chem. Theory Comput. 13, 577 (2017)

    Article  Google Scholar 

  11. K. Jiang, J. Nafziger, A. Wasserman, J. Chem. Phys. 148, 104113 (2018)

    Article  ADS  Google Scholar 

  12. M.H. Cohen, A. Wasserman, K. Burke, J. Phys. Chem. A 111, 12447 (2007)

    Article  Google Scholar 

  13. M. Cohen, A. Wasserman, R. Car, K. Burke, J. Phys. Chem. A 113, 2183 (2009)

    Article  Google Scholar 

  14. P. Elliott, M. Cohen, A. Wasserman, K. Burke, J. Chem. Theory Comput. 5, 827 (2009)

    Article  Google Scholar 

  15. P. Elliott, K. Burke, M. Cohen, A. Wasserman, Phys. Rev. A 82, 024501 (2010)

    Article  ADS  Google Scholar 

  16. R. Tang, J. Nafziger, A. Wasserman, Phys. Chem. Chem. Phys. 14, 7780 (2012)

    Article  Google Scholar 

  17. J.H. Eberly, Phys. Rev. A 42, 5750 (1990)

    Article  ADS  Google Scholar 

  18. M. Lein, E.K.U. Gross, V. Engel, J. Phys. B: At., Mol. Opt. Phys 33, 433 (2000)

    Article  ADS  Google Scholar 

  19. T.E. Baker, E.M. Stoudenmire, L.O. Wagner, K. Burke, S.R. White, Phys. Rev. B 91, 235141 (2015)

    Article  ADS  Google Scholar 

  20. M.A. Mosquera, A. Wasserman, Molecular Phys. 111, 505 (2013)

    Article  ADS  Google Scholar 

  21. B. Fornberg, Math. Comput. 51, 699 (1988)

    Article  Google Scholar 

  22. N. Helbig, J.I. Fuks, M. Casula, M.J. Verstraete, M.A.L. Marques, I.V. Tokatly, A. Rubio, Phys. Rev. A 83, 032503 (2011)

    Article  ADS  Google Scholar 

  23. S.A. Shpilkin, E.A. Smolenskii, N.S. Zefirov, J. Chem. Inf. Comput. Sci. 36, 409 (1996)

    Article  Google Scholar 

  24. C.G. Broyden, Math. Comput. 19, 577 (1965)

    Article  Google Scholar 

  25. D.S. Jensen, A. Wasserman, Int. J. Quantum Chem. 118, e25425 (2018)

    Article  Google Scholar 

  26. T.A. Wesołowski, A. Warshel, J. Phys. Chem. A 97, 8050 (1993)

    Article  Google Scholar 

  27. C.R. Jacob, J. Neugebauer, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 325 (2014)

    Article  Google Scholar 

  28. O.V. Gritsenko, E.J. Baerends, Phys. Rev. A 54, 1957 (1996)

    Article  ADS  Google Scholar 

  29. N. Helbig, I.V. Tokatly, A. Rubio, J. Chem. Phys. 131, 224105 (2009)

    Article  ADS  Google Scholar 

  30. D.G. Tempel, T.J. Martínez, N.T. Maitra, J. Chem. Theory Comput. 5, 770 (2009)

    Article  Google Scholar 

  31. J.I. Fuks, S.E.B. Nielsen, M. Ruggenthalerbc, N.T. Maitra, Phys. Chem. Chem. Phys. 18, 20976 (2016)

    Article  Google Scholar 

  32. T. Gould, J. Toulouse, Phys. Rev. A 90, 050502(R) (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Oueis.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oueis, Y., Wasserman, A. Exact partition potential for model systems of interacting electrons in 1-D. Eur. Phys. J. B 91, 247 (2018). https://doi.org/10.1140/epjb/e2018-90196-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90196-3

Navigation