Skip to main content
Log in

Landauer’s limit and the physicality of information

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Landauer’s lower bound on the dissipative cost of information erasure is revisited within a new physical conception of information. The notion of strong physical information is introduced, and the new conception of physical information – observer-local referential (OLR) information – is defined, shown to be strongly physical, and related to other measures that arise in physical information contexts. A generalization of Landauer’s limit is then obtained for OLR information from quantum dynamics and entropic inequalities alone. Specializations of this bound are compared and contrasted to similar bounds under conditions for which they coincide, and important distinctions between seemingly identical bounds expressed in terms of various information measures are discussed. The controversial distinction between Landauer erasure of known and unknown data – and the alleged difference between their respective erasure costs – is then explored via OLR information. This physically grounds and clarifies distinctions between known and unknown data and between unconditional and conditional erasure operations, enables a straightforward physical accounting of associated lower bounds on erasure costs, and illustrates the advantages of OLR information for resolution of controversies related to the dissipative cost of information erasure. Applications of OLR information to determination of irreversibility induced dissipation bounds in more complex computing scenarios are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Landauer, IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  Google Scholar 

  2. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Nature 483, 187 (2012)

    Article  ADS  Google Scholar 

  3. Y. Jun, M. Gavrilov, J. Bechhoefer, Phys. Rev. Lett. 113, 19601 (2014)

    Article  Google Scholar 

  4. J. Hong, B. Lambson, S. Dhuey, J. Bokor, Sci. Adv. 2, 1501492 (2016)

    Article  ADS  Google Scholar 

  5. A. Orlov, C.S. Lent, C.C. Thorpe, G.P. Boechler, G.L. Snider, Japan. J. Appl. Phys. 51, 06FE10 (2012)

    Article  Google Scholar 

  6. J. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015)

    Article  Google Scholar 

  7. S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016)

    Article  ADS  Google Scholar 

  8. S. Ciliberto, Phys. Rev. X 7, 021051 (2017)

    Google Scholar 

  9. T.N. Theis, H.-S.P. Wong, Comput. Sci. Eng. 19, 41 (2017)

    Article  Google Scholar 

  10. T.M. Conte, E.P. DeBenedictis, P.A. Gargini, E. Track, Computer 50, 20 (2017)

    Article  Google Scholar 

  11. S.R. Williams, Comput. Sci. Eng. 19, 7 (2017)

    Article  Google Scholar 

  12. J. Koomey, S. Berard, M. Sanchez, H. Wong, IEEE Ann. Hist. Comp. 33, 46 (2011)

    Article  Google Scholar 

  13. J.D. Norton, Stud. Hist. Philos. Mod. Phys. 42, 184 (2011)

    Article  Google Scholar 

  14. N.G. Anderson, Inform. Sci. 415, 397 (2017)

    Article  Google Scholar 

  15. N.G. Anderson, Phys. Lett. A 372, 5552 (2008)

    Article  ADS  Google Scholar 

  16. A.S. Kholevo, Probl. Inf. Transm. 9, 177 (1973)

    MathSciNet  Google Scholar 

  17. M.H. Partovi, Phys. Lett. A 137, 440 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  18. C.H. Bennett, Stud. Hist. Philos. Mod. Phys. 34, 501 (2003)

    Article  Google Scholar 

  19. C.S. Lent, M. Liu, Y. Lu, Nanotechnology 17, 4240 (2006)

    Article  ADS  Google Scholar 

  20. M. Lopez-Suarez, I. Neri, L. Gammaitoni, Nat. Commun. 7, 12068 (2016)

  21. N.G. Anderson, in Energy limits in computation – a review of Landauer’s principle, theory and experiments, edited by C.S. Lent, A.O. Orlov, W. Porod, G.L. Snider (Springer, New York, 2018)

  22. N.G. Anderson, Int. J. Mod. Phys.: Conf. Ser. 33, 1460354 (2014)

    Google Scholar 

  23. N.G. Anderson, Phys. Lett. A 376, 1426 (2012)

    Article  ADS  Google Scholar 

  24. N.G. Anderson, Theor. Comp. Sci. 411, 4179 (2010)

    Article  Google Scholar 

  25. N. Ganesh, N.G. Anderson, in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI and Nanotechnol. Systems (2013), pp. 284–289

  26. I. Ercan, N.G. Anderson, IEEE Trans. Nanotechnol. 12, 1047 (2013)

    Article  ADS  Google Scholar 

  27. K.J. Stearns, N.G. Anderson, in Proc. 9th IEEE/ACM Int. Symp. on Nanoscale Architectures (2013), pp. 101–105

  28. N. Ganesh, N.G. Anderson, Phys. Lett. A 377, 3266 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. N.G. Anderson, I. Ercan, N. Ganesh, IEEE Trans. Nanotechnol. 12, 902 (2013)

    Article  ADS  Google Scholar 

  30. J.P. Ricci, N.G. Anderson, in Proc. 2nd IEEE Intern. Conf. on Rebooting Computing (2017), pp. 1–4

  31. N.G. Anderson, in Proc. 50th Asilomar Conf. Signals, Syst., Comput. (2016), pp. 1653–1657

  32. N. Ganesh, N.G. Anderson, in Proc. 17th IEEE Int. Conf. on Nanotechnol. (2017), pp. 594–599

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal G. Anderson.

Additional information

Contribution to the Topical Issue “The Physics of Micro-Energy Use and Transformation”, edited by Luca Gammaitoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, N.G. Landauer’s limit and the physicality of information. Eur. Phys. J. B 91, 156 (2018). https://doi.org/10.1140/epjb/e2018-80716-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80716-6

Navigation