Skip to main content
Log in

Thermoelectric efficiency enhanced in a quantum dot with polarization leads, spin-flip and external magnetic field

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We theoretically study the thermoelectric transport properties in a quantum dot system with two ferromagnetic leads, the spin-flip scattering and the external magnetic field. The results show that the spin polarization of the leads strongly influences thermoelectric coefficients of the device. For the parallel configuration the peak of figure of merit increases with the increase of polarization strength and non-collinear configuration trends to destroy the improvement of figure of merit induced by lead polarization. While the modulation of the spin-flip scattering on the figure of merit is effective only in the absence of external magnetic field or small magnetic field. In terms of improving the thermoelectric efficiency, the external magnetic field plays a more important role than spin-flip scattering. The thermoelectric efficiency can be significantly enhanced by the magnetic field for a given spin-flip scattering strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Gallagher et al., Phys. Rev. Lett. 64, 2058 (1990)

    Article  ADS  Google Scholar 

  2. Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  3. R. Świrkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2009)

    Article  ADS  Google Scholar 

  4. Q. Wang, H.Q. Xie, Y.H. Nie, W. Ren, Phys. Rev. B 87, 075102 (2013)

    Article  ADS  Google Scholar 

  5. Z.Z. Zhang, L. Jiang, R.Q. Wang, D.Y. Xing, Appl. Phys. Lett. 97, 241201 (2010)

    Google Scholar 

  6. R.Q. Wang, L. Shen, R. Shen, B.G. Wang, D.Y. Xing, Phys. Rev. Lett. 105, 057202 (2010)

    Article  ADS  Google Scholar 

  7. P.B. Niu, Y.Y. Zhang, Q. Wang, Y.H. Nie, Phys. Lett. A 376, 1481 (2012)

    Article  ADS  Google Scholar 

  8. C. Zhang, H. Yao, Y.H. Nie, J.Q. Liang, AIP Adv. 6, 115202 (2016)

    Article  ADS  Google Scholar 

  9. L.W. Molenkamp, H.H. Van, C.W.J. Beenakker, R. Eppenga, C.T. Foxon, Phys. Rev. Lett. 65, 1052 (1990)

    Article  ADS  Google Scholar 

  10. L.W. Molenkamp, T. Gravier, H.H. Van, O.J. Buijk, M.A. Mabesoone, C.T. Foxon, Phys. Rev. Lett. 68, 3765 (1992)

    Article  ADS  Google Scholar 

  11. P. Reddy, S.Y. Jiang, R.A. Segalman, A. Majumdar, Science 315, 1568 (2007)

    Article  ADS  Google Scholar 

  12. Y. Han, W.J. Gong, H.M. Wang, An. Du, J. Appl. Phys. 112, 123701 (2012)

    Article  ADS  Google Scholar 

  13. X. Yang, J. Zheng, C.L. Li, Y. Guo, J. Phys.: Condens. Matter 27, 075302 (2015)

    ADS  Google Scholar 

  14. Z.L. He, J.Y. Bai, L. Cui, Q. Li, G.H. Han, B.L. Zhang, Physica B 477, 64 (2015)

    Article  ADS  Google Scholar 

  15. L Xu, Z.J. Li, H.Y. Hou, P.B. Niu, Y.H. Nie, J. Phys. D: Appl. Phys. 49, 405305 (2016)

    Article  Google Scholar 

  16. Y.M. Blanter, C. Bruder, R. Fazio, H. Schoeller, Phys. Rev. B 55, 4069 (1997)

    Article  ADS  Google Scholar 

  17. B. Kubala, J. König, Phys. Rev. B 73, 195316 (2006)

    Article  ADS  Google Scholar 

  18. X. Zianni, Phys. Rev. B 75, 045344 (2007)

    Article  ADS  Google Scholar 

  19. Z.Y. Zhang, J. Phys.: Condens. Matter 19, 086214 (2007)

    ADS  Google Scholar 

  20. M. Wierzbicki, R. Swirkowicz, Phys. Rev. B 84, 075410 (2011)

    Article  ADS  Google Scholar 

  21. P. Trocha, J. Barnaś, Phys. Rev. B 85, 085408 (2012)

    Article  ADS  Google Scholar 

  22. C.C. Chen, D.M.T. Kuo, Y.C. Chang, Phys. Chem. Chem. Phys. 17, 19386 (2015)

    Article  Google Scholar 

  23. W.P. Xu, Y.Y. Zhang, Q. Wang, Z.J. Li, Y.H. Nie, Phys. Lett. A 380, 958 (2016)

    Article  ADS  Google Scholar 

  24. Z.G. Chen, J. Wang, B.G. Wang, D.Y. Xing, Phys. Lett. A 334, 436 (2005)

    Article  ADS  Google Scholar 

  25. Q. Chen, L.L. Zhao, Commun. Theor. Phys. 62, 417 (2014)

    Article  ADS  Google Scholar 

  26. J. Liu, J.Chen, S. Wang, Phys. Scr. 89, 085701 (2014)

    Article  ADS  Google Scholar 

  27. F. Jiang, H. Xie, Y.H. Yan, Phys. Lett. A 378, 1854 (2014)

    Article  ADS  Google Scholar 

  28. P. Zhang, Q.K. Xue, Y.P. Wang, X.C. Xie, Phys. Rev. Lett. 89, 286803 (2002)

    Article  ADS  Google Scholar 

  29. H. Zhang, G.M. Zhang, L. Yu, J. Phys.: Condens. Matter 21, 155501 (2009)

    ADS  Google Scholar 

  30. P.B. Niu, Y.L. Shi, Z. Sun, Y.H. Nie, H.G. Luo, J. Phys. D:Appl. Phys. 49, 045002 (2016)

    Article  ADS  Google Scholar 

  31. P. Sun et al., Nat. Commun. 6, 7475 (2015)

    Article  Google Scholar 

  32. J. Peng, B.G. Wang, D.Y. Xing, Phys. Rev. B 63, 245326 (2003)

    Google Scholar 

  33. X.F. Cao, Y.M. Shi, X.L. Song, S.P. Zhou, H. Chen, Phys. Rev. B 70, 235341 (2004)

    Article  ADS  Google Scholar 

  34. H. Pan, T.H. Lin, J. Phys.: Condens. Matter 17, 5207 (2005)

    ADS  Google Scholar 

  35. Y.M. Shi, S.P. Zhuo, X.F. Cao, H. Huang, H. Chen, Europhys. Lett. 73, 941 (2006)

    Article  ADS  Google Scholar 

  36. Y.S. Liu, X.F. Yang, X.H. Fan, Y.J. Xia, Phys. Lett. A 372, (2008)

  37. W. Rudzinski, J. Barnas, R. Swirkowicz, M. Wilczynski, Phys. Rev. B 71, 205307 (2005)

    Article  ADS  Google Scholar 

  38. K.R. Wald et al., Phys. Rev. Lett. 73, 1011 (1994)

    Article  ADS  Google Scholar 

  39. D.M.T. Kuo, Y.C. Chang, Phys. Rev. B 81, 205321 (2010)

    Article  ADS  Google Scholar 

  40. C.D. Mahan, Many-particle physics (Plenum, New York, 2000)

  41. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)

    Article  ADS  Google Scholar 

  42. D. Nozaki, H. Sevincli, W. Li, R. Gutierrez, G. Cuniberti, Phys. Rev. B 81, 235406 (2010)

    Article  ADS  Google Scholar 

  43. M. Tsaousidou, G.P. Triberis, J. Phys.: Condens. Matter 22, 355304 (2010)

    Google Scholar 

  44. D.M.T. Kuo, C.C. Chen, Y.C. Chang, Phys. Rev. B 95, 075432 (2017)

    Article  ADS  Google Scholar 

  45. R. Świrkowicz, M. Wilczyński, M. Wawrzyniak, J. Barnaś, Phys. Rev. B 73, 193312 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hang Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Niu, PB., Zhang, C. et al. Thermoelectric efficiency enhanced in a quantum dot with polarization leads, spin-flip and external magnetic field. Eur. Phys. J. B 91, 57 (2018). https://doi.org/10.1140/epjb/e2018-80552-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80552-8

Keywords

Navigation