Skip to main content
Log in

Insight into destabilization mechanism of Mg-based hydrides interstitially co-doped with nonmetals: a DFT study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Mg-based metal hydride is one of the most promising materials for hydrogen energy storage. However, the high thermal stability due to strong bonding effects between the atoms limits its practical application. In order to reduce the thermal stability, a method of doping double nonmetals into Mg-based system was proposed in this study. The density functional theory (DFT) calculation results showed that the thermal stabilities of both the B-N co-doped Mg-based alloy and its hydride are reduced compared with pure Mg-based system. The relative formation enthalpies of the alloy and its hydride are 0.323 and 0.595 eV atom−1, respectively. The values are much higher than those for either singly B- or N-doped Mg-based system. The more significant destabilization by doping double nonmetal elements than single element is mainly attributed to a dual effect in weakening Mg–Ni/NiH4 bonds, caused by criss-cross interactions between B–Ni and N–Mg bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4, 366 (2005)

    Article  ADS  Google Scholar 

  2. C. Pak, S. Kang, Y.S. Choi, H. Chang, J. Mater. Res. 25, 2010 2063

    Article  ADS  Google Scholar 

  3. M. Jasiński, M. Dors, J. Mizeraczyk, Eur. Phys. J. D 54, 179 (2009)

    Article  ADS  Google Scholar 

  4. T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 1, 16059 (2016)

    Article  ADS  Google Scholar 

  5. Chris G. Van de Walle, A. Peles, A. Janotti, G.B. Wilson-Short, Physica B 404, 793 (2009)

    Article  ADS  Google Scholar 

  6. Sh. Varshoy, B. Khoshnevisan, M. Mohammadi, M. Behpour, Physica B 526, 143 (2017)

    Article  ADS  Google Scholar 

  7. E.S. Cho, A.M. Ruminski, S. Aloni, Y.S. Liu, J.H. Guo, J.J. Urban, Nat. Commun. 7, 10804 (2016)

    Article  ADS  Google Scholar 

  8. Z. Wu, F. Yang, Z. Zhang, Z. Bao, Appl. Energy 130, 712 (2014)

    Article  Google Scholar 

  9. C. Nützenadel, A. Züttel, D. Chartouni, G. Schmid, L. Schlapbach, Eur. Phys. J. D 8, 245 (2000)

    Article  ADS  Google Scholar 

  10. P.D. Rango, P. Marty, D. Fruchart, Appl. Phys. A 122, 1 (2016)

    Article  Google Scholar 

  11. L. Schlapbach, A. Züttel, Nature 414, 353 (2001)

    Article  ADS  Google Scholar 

  12. Y. Chen, H. Huang, J. Fu, Q. Guo, F. Pan, S. Deng, J. Li, G. Zhao, Co, J. Mater. Res. 24, 1311 (2009)

    Article  ADS  Google Scholar 

  13. Y. Tan, Y. Zhu, J. Yuan, L. Li, J. Mater. Res. 30, 1 (2015)

    Article  Google Scholar 

  14. Y. Jia, C. Sun, L. Cheng, M.A. Wahab, J. Cui, J. Zou, M. Zhu, X. Yao, Phys. Chem. Chem. Phys. 15, 5814 (2013)

    Article  Google Scholar 

  15. Y. Jia, C. Sun, S. Shen, J. Zou, S.S. Mao, X. Yao, Renew. Sust. Energy Rev. 44, 289 (2015)

    Article  Google Scholar 

  16. R. Trivedi, D. Bandyopadhyay, Int. J. Hydrogen Energy 40, 12727 (2015)

    Article  Google Scholar 

  17. R. Trivedi, D. Bandyopadhyay, Int. J. Hydrogen Energy 41, 20113 (2016)

    Article  Google Scholar 

  18. Y. Jia, C. Sun, Y. Peng, W. Fang, X. Yan, D. Yang, J. Zou, S.S. Mao, X. Yao, J. Mater. Chem. A 3, 8294 (2015)

    Article  Google Scholar 

  19. S.W. Tang, L.L. Sun, J.D. Feng, H. Sun, R.S. Wang, Y.F. Chang, Eur. Phys. J. D 53, 197 (2009)

    Article  ADS  Google Scholar 

  20. L. Guo, S. Li, X. Zhang, R. Zhang, J. Guo, Eur. Phys. J. D 67, 1 (2013)

    Article  Google Scholar 

  21. Y. Zeng, K. Fan, X. Li, B. Xu, X. Gao, L. Meng, Int. J. Hydrogen Energy 35, 10349 (2010)

    Article  Google Scholar 

  22. L.W. Huang, O. Elkedim, R. Hamzaoui, J. Alloys Compd. 509, S328 (2011)

    Article  Google Scholar 

  23. L.W. Huang, O. Elkedim, M. Nowak, R. Chassagnon, M. Jurczyk, Int. J. Hydrogen Energy 37, 14248 (2012)

    Article  Google Scholar 

  24. D. Vyas, P. Jain, J. Khan, V. Kulshrestha, A. Jain, I.P. Jain, Int. J. Hydrogen Energy 37, 3755 (2012)

    Article  Google Scholar 

  25. D. Vyas, P. Jain, G. Agarwal, A. Jain, I.P. Jain, Int. J. Hydrogen Energy 37, 16013 (2012)

    Article  Google Scholar 

  26. J. Jiang, S. Zhang, S. Huang, P. Wang, H. Tian, Comput. Mater. Sci. 74, 55 (2013)

    Article  Google Scholar 

  27. H. Ding, S. Zhang, Y. Zhang, S. Huang, P. Wang, H. Tian, Int. J. Hydrogen Energy 37, 6700 (2012)

    Article  Google Scholar 

  28. Z. Wu, L.Y. Zhu, F.S. Yang, Z. Jiang, Z.X. Zhang, Int. J. Hydrogen Energy 41, 18550 (2016)

    Article  Google Scholar 

  29. M. Bhihi, M. El Khatabi, M. Lakhal, S. Naji, H. Labrim, A. Benyoussef, A. El Kenz, M. Loulidi, Int. J. Hydrogen Energy 40, 8356 (2015)

    Article  Google Scholar 

  30. M. Abdellaoui, M. Lakhal, M. Bhihi, M. El Khatabi, A. Benyoussef, A. El Kenz, M. Loulidi, Int. J. Hydrogen Energy 41, 20908 (2015)

    Article  Google Scholar 

  31. L.T. Wei, X.Z. Pan, D.H. Wu, H.C. Wang, L. Shao, J. Zheng, B.Y. Tang, Comput. Mater. Sci. 103, 45 (2015)

    Article  Google Scholar 

  32. M.V. Simičić, M. Zdujić, R. Dimitrijević, Lj. Nikolić-Bujanović, N.H. Popović, J. Power Sources 158, 730 (2006)

    Article  ADS  Google Scholar 

  33. P. Zolliker, K. Yvon, J.D. Jorgensen, F.J. Rotella, Inorg. Chem. 25, 3590 (1986)

    Article  Google Scholar 

  34. S.F. Matar, Prog. Solid State Chem. 38, 1 (2010)

    Article  ADS  Google Scholar 

  35. Q.X. Cao, T.M. Lei, Y.X. Huang, Introduction to solid state physics, 3rd edn. (Xidian University Press, Xi’an, China, 2008)

  36. S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz, J. Alloys Compd. 307, 226 (2000)

    Article  Google Scholar 

  37. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Mater. 14, 2717 (2002)

    Article  ADS  Google Scholar 

  38. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  39. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  40. J.F. Herbst, L.G. Hector, Phys. Rev. B 79, 155113 (2009)

    Article  ADS  Google Scholar 

  41. P.G. Karamertzanis, S.L. Price, J. Chem. Theory Comput. 2, 1184 (2006)

    Article  Google Scholar 

  42. J. Zhang, Y.N. Huang, P. Peng, C. Mao, Y.M. Shao, D.W. Zhou, Int. J. Hydrogen Energy 36, 5375 (2011)

    Article  Google Scholar 

  43. Y.Y. Li, G.L. Sun, Y.M. Mi, Am. J. Anal. Chem. 7, 67 (2016)

    Article  Google Scholar 

  44. H. Wang, H.J. Lin, W.T. Cai, L.Z. Ouyang, M. Zhu, J. Alloys Compd. 658, 280 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhu, L., Yang, F. et al. Insight into destabilization mechanism of Mg-based hydrides interstitially co-doped with nonmetals: a DFT study. Eur. Phys. J. B 91, 73 (2018). https://doi.org/10.1140/epjb/e2018-80520-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80520-4

Keywords

Navigation