Skip to main content
Log in

Hopping electron model with geometrical frustration: kinetic Monte Carlo simulations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The hopping electron model on the Kagome lattice was investigated by kinetic Monte Carlo simulations, and the non-equilibrium nature of the system was studied. We have numerically confirmed that aging phenomena are present in the autocorrelation function \hbox{$C \, \left({t,t_{W} } \right)$}C t,tW)( of the electron system on the Kagome lattice, which is a geometrically frustrated lattice without any disorder. The waiting-time distributions \hbox{$p\left(\tau \right)$}pτ)( of hopping electrons of the system on Kagome lattice has been also studied. It is confirmed that the profile of \hbox{$p\, \left(\tau \right)$}p τ)( obtained at lower temperatures obeys the power-law behavior, which is a characteristic feature of continuous time random walk of electrons. These features were also compared with the characteristics of the Coulomb glass model, used as a model of disordered thin films and doped semiconductors. This work represents an advance in the understanding of the dynamics of geometrically frustrated systems and will serve as a basis for further studies of these physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sato, F. Kagawa, K. Kobayashi, A. Ueda, H. Mori, K. Miyagawa, K. Kanoda, R. Kumai, Y. Murakami, Y. Tokura, J. Phys. Soc. Jpn 83, 083602 (2014)

    Article  ADS  Google Scholar 

  2. S. Mahmoudian, L. Rademaker, A. Ralko, S. Fratini, V. Dobrosavljeviæ, Phys. Rev. Lett. 115, 025701 (2015)

    Article  ADS  Google Scholar 

  3. H. Seo, K. Hukushima, JPSJ News Comments 11, 14 (2014)

    Article  Google Scholar 

  4. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Heidelberg, 1984)

  5. D.R. Grempel, Europhys. Lett. 66, 854 (2004)

    Article  ADS  Google Scholar 

  6. A.B. Kolton, D.R. Grempel, D. Domínguez, Phys. Rev. B 71, 024206 (2005)

    Article  ADS  Google Scholar 

  7. E.R. Grannan, C.C. Yu, Phys. Rev. Lett. 71, 3335 (1993)

    Article  ADS  Google Scholar 

  8. E.R. Grannan, C.C. Yu, Phys. Rev. Lett. 73, 2934 (1994)

    Article  ADS  Google Scholar 

  9. T. Vojta, M. Schreiber, Phys. Rev. Lett. 73, 2933 (1994)

    Article  ADS  Google Scholar 

  10. T. Terao, Philos. Mag. 89, 405 (2009)

    Article  ADS  Google Scholar 

  11. T. Terao, A. Kono, W. Takahashi, AIP Conf. Proc. 1518, 320 (2013)

    Article  ADS  Google Scholar 

  12. B. Skinner, T. Chen, B.I. Shklovskii, Phys. Rev. B 85, 205316 (2012)

    Article  ADS  Google Scholar 

  13. T. Chen, B. Skinner, B.I. Shklovskii, Phys. Rev. Lett. 109, 126805 (2012)

    Article  ADS  Google Scholar 

  14. E. Spohr, J. Chem. Phys. 107, 6342 (1994)

    Article  ADS  Google Scholar 

  15. P.S. Crozier, R.L. Rowley, E. Spohr, D. Henderson, J. Chem. Phys. 112, 9253 (2000)

    Article  ADS  Google Scholar 

  16. T. Granet, J. Delahaye, M. Sabra, F. Gay, Eur. Phys. J. B 56, 183 (2007)

    Article  ADS  Google Scholar 

  17. T. Grenet, J. Delahaye, Eur. Phys. J. B 76, 229 (2010)

    Article  ADS  Google Scholar 

  18. H. Scher, E.W. Montroll, Phys. Rev. B 12, 2455 (1975)

    Article  ADS  Google Scholar 

  19. J. Nelson, Phys. Rev. B 59, 15734 (1999), and references therein

    Article  Google Scholar 

  20. M. Pollak, M. Ortuño, A. Frydman, The Electron Glass (Cambridge University Press, Cambridge, 2013)

  21. A. Amir, Y. Oreg, Y. Imry, Ann. Rev. Condens. Matter Phys. 2, 235 (2011)

    Article  ADS  Google Scholar 

  22. N.P. Stepina, A.I. Yakimov, A.V. Nenashev, A.V. Dvurechenskii, N.A. Sobolev, J.P. Leitao, V.V. Kirienko, A.I. Nikiforov, E.S. Koptev, L. Pereira, M.C. Carmo, J. Exp. Theor. Phys. 103, 269 (2006)

    Article  ADS  Google Scholar 

  23. N.P. Stepina, E.C. Koptev, A.V. Nenashev, A.V. Durechenskii, A. I. Nikiforov, Phys. Stat. Sol. C 5, 689 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamichi Terao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terao, T. Hopping electron model with geometrical frustration: kinetic Monte Carlo simulations. Eur. Phys. J. B 89, 209 (2016). https://doi.org/10.1140/epjb/e2016-70141-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70141-4

Keywords

Navigation