Skip to main content
Log in

Percolation threshold on planar Euclidean Gabriel graphs

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present article, numerical simulations have been performed to find the bond and site percolation thresholds on two-dimensional Gabriel graphs (GG) for Poisson point processes. GGs belong to the family of “proximity graphs” and are discussed, e.g., in context of the construction of backbones for wireless ad-hoc networks. Finite-size scaling analyses have been performed to find the critical points and critical exponents ν, β and γ. The critical exponents obtained this way verify that the associated universality class is that of standard 2D percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.R. Gabriel, R.R. Sokal, Syst. Biol. 18, 259 (1969)

    Google Scholar 

  2. D. Stauffer, Phys. Rep. 54, 1 (1979)

    Article  ADS  Google Scholar 

  3. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, 1992)

  4. J. Goldenberg, B. Libai, S. Solomon, N. Jan, D. Stauffer, Physica A 284, 335 (2000)

    Article  ADS  Google Scholar 

  5. C.L. Henley, Phys. Rev. Lett. 71, 2741 (1993)

    Article  ADS  Google Scholar 

  6. C. Moore, M.E.J. Newman, Phys. Rev. E 61, 5678 (2000)

    Article  ADS  Google Scholar 

  7. M.E.J. Newman, R.M. Ziff, Phys. Rev. Lett. 85, 4104 (2000)

    Article  ADS  Google Scholar 

  8. O. Melchert, A.K. Hartmann, New J. Phys. 10, 043039 (2008)

    Article  ADS  Google Scholar 

  9. M. Cieplak, A. Maritan, R.B. Jayanth, Phys. Rev. Lett. 72, 2320 (1994)

    Article  ADS  Google Scholar 

  10. O. Melchert, A.K. Hartmann, Phys. Rev. B 76, 174411 (2007)

    Article  ADS  Google Scholar 

  11. H.-P. Hsu, M.-C. Huang, Phys. Rev. E 60, 6361 (1999)

    Article  ADS  Google Scholar 

  12. A.M. Becker, R.M. Ziff, Phys. Rev. E 80, 041101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. J.-P. Kownacki, Phys. Rev. E 77, 021121 (2008)

    Article  ADS  Google Scholar 

  14. D. Achlioptas, R.M. D’Souza, J. Spencer, Science 323, 1453 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Bastas, P. Giazitzidis, M. Maragakis, K. Kosmidis, Physica A 407, 54 (2014)

    Article  ADS  Google Scholar 

  16. S.R. Broadbent, J.M. Hammersley, Math. Proc. Cambridge Philos. Soc. 53, 629 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.W. Essam, Rep. Prog. Phys. 43, 833 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Gitterman, V. Halpern, Phase Transitions: A Brief Account with Modern Applications (World Scientific, 2004)

  19. R.M. Ziff, Phys. Rev. Lett. 103, 045701 (2009)

    Article  ADS  Google Scholar 

  20. A.-L. Barabási, A. Réka, Sience 286, 509 (1999)

    Article  ADS  Google Scholar 

  21. J.W. Essam, M.E. Fisher, Rev. Mod. Phys. 42, 272 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Santi, ACM Comput. Surv. 37, 164 (2005)

    Article  Google Scholar 

  23. B. Karp, H.-T. Kung, in Proceedings of the 6th annual international conference on Mobile computing and networking (ACM, 2000), p. 243

  24. P. Bose, P. Morin, I. Stojmenović, J. Urrutia, Wirel. Netw. 7, 609 (2001)

    Article  Google Scholar 

  25. F. Kuhn, R. Wattenhofer, A. Zollinger, in Proceedings of the 2003 joint workshop on Foundations of mobile computing (ACM, 2003), p. 69

  26. R.R. Sokal, J. Bird, B. Riska, Biol. J. Linn. Soc. 14, 163 (1980)

    Article  Google Scholar 

  27. R.R. Sokal, N.L. Oden, Biol. J. Linn. Soc. 10, 199 (1978)

    Article  Google Scholar 

  28. R.K. Selander, D.W. Kaufman, Evolution 29, 385 (1975)

    Article  Google Scholar 

  29. O. Melchert, Phys. Rev. E 87, 042106 (2013)

    Article  ADS  Google Scholar 

  30. G. Michailidis, Minimum Spanning Tree. Encyclopedia of Statistics in Behavioral Science (John Wiley & Sons, Ltd, 2005)

  31. B. Delaunay, Bull. Acad. Sci. USSR 6, 793 (1934)

    Google Scholar 

  32. M.E. Fisher, J.W. Essam, J. Math. Phys. 2, 609 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  33. B. Bollobás, O. Riordan, Probab. Theory Rel. 136, 417 (2006)

    Article  Google Scholar 

  34. G.T. Toussaint, Pattern Recogn. 12, 261 (1980)

    Article  MathSciNet  Google Scholar 

  35. F.R. Preparata, M.I. Shamos, Computational Geometry (Springer, New-York, 1985)

  36. C.B. Barber, Qhull, 1995, http://www.qhull.org/html

  37. J.M. Billiot, F. Corset, E. Fontenas, arXiv:1004.5292 [math-ph] (2010)

  38. E. Bertin, J.-M. Billiot, R. Drouilhet, Adv. Appl. Probab. 34, 689 (2002)

    Article  MathSciNet  Google Scholar 

  39. N. Bastas, K. Kosmidis, P. Giazitzidis, M. Maragakis, Phys. Rev. E 90, 062101 (2014)

    Article  ADS  Google Scholar 

  40. M.E.J. Newman, R.M. Ziff, Phys. Rev. E 64, 016706 (2001)

    Article  ADS  Google Scholar 

  41. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction (Springer, Berlin, 2002)

  42. O. Melchert, arXiv:0910.5403 [physics.comp-ph] (2009)

  43. A. Sur, J.L. Lebowitz, J. Marro, M.H. Kalos, S. Kirkpatrick, J. Stat. Phys. 15, 345 (1976)

    Article  ADS  Google Scholar 

  44. J.L. Jacobsen, J. Phys. A 47, 135001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Norrenbrock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norrenbrock, C. Percolation threshold on planar Euclidean Gabriel graphs. Eur. Phys. J. B 89, 111 (2016). https://doi.org/10.1140/epjb/e2016-60728-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60728-0

Keywords

Navigation