Skip to main content
Log in

Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L sc and L c are identified and investigated. The nucleation length L sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L c and the acceleration phase exist for both weak and strong instability regimes. Both L sc and L c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L sc , of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Latour, A. Schubnel, S. Nielsen, R. Madariaga, S. Vinciguerra, Geophys. Res. Lett. 40, 5064 (2013)

    Article  ADS  Google Scholar 

  2. G.C. McLasky, B.D. Kilgore, J. Geophys. Res. 118, 2982 (2013)

    Article  ADS  Google Scholar 

  3. R. Ando, K. Imanishi, Earth Planets Space 63, 767 (2011)

    Article  ADS  Google Scholar 

  4. Y. Ohta, R. Hino, D. Inazu, M. Ohzono, Y. Ito, M. Mishina, T. Iinuma, J. Nakajima, Y. Osada, K. Suzuki, H. Fujimoto, K. Tachibana, T. Demachi, N.S. Miura, Jpn Geophys. Res. Lett. 39, L16304 (2012)

    ADS  Google Scholar 

  5. A. Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, N. Hirata, Science 335, 705 (2012)

    Article  ADS  Google Scholar 

  6. M. Bouchon, V. Durand, D. Marsan, H. Karabulut, J. Schmittbuhl, Nat. Geosci. 6, 299 (2013)

    Article  ADS  Google Scholar 

  7. C. Tape, M. West, V. Silwal, N. Ruppert, Earth Planet. Sci. Lett. 363, 231 (2013)

    Article  ADS  Google Scholar 

  8. J.H. Dieterich, Techtonophysics 211, 115 (1992)

    Article  ADS  Google Scholar 

  9. M. Ohnaka, Pure Appl. Geophys. 157, 2259 (2000)

    Article  ADS  Google Scholar 

  10. M. Ohnaka, J. Geophys. Res. 108, 2080 (2003)

    Article  ADS  Google Scholar 

  11. C.H. Scholz, The Mechanics of Earthquakes and Faulting, 2nd edn. (Cambridge Univ. Press, 2002)

  12. J.H. Dieterich, in Treatise on Geophysics, edited by H. Kanamori (Elsevier, Amsterdam, 2009), Vol. 4, pp. 107−129

  13. J.H. Dietrich, J. Geophys. Res. 84, 2161 (1979)

    Article  ADS  Google Scholar 

  14. A. Ruina, J. Geophys. Res. 88, 10359 (1983)

    Article  ADS  Google Scholar 

  15. C. Marone, Ann. Rev. Earth Planet Sci. 26, 643 (1998)

    Article  ADS  Google Scholar 

  16. C.H. Scholz, Nature 391, 3411 (1998)

    Article  Google Scholar 

  17. S.T. Tse, J.R. Rice, J. Geophys. Res. 91, 9452 (1986)

    Article  ADS  Google Scholar 

  18. W.D. Stuart, Pure. Appl. Geophys. 126, 619 (1988)

    Article  ADS  Google Scholar 

  19. F. Horowitz, A. Ruina, J. Geophys. Res. 94, 10279 (1989)

    Article  ADS  Google Scholar 

  20. J.R. Rice, J. Geophys. Res. 98, 9885 (1993)

    Article  ADS  Google Scholar 

  21. Y. Ben-Zion, J.R. Rice, J. Geophys. Res. 102, 17771 (1997)

    Article  ADS  Google Scholar 

  22. N. Kato, T. Hirasawa, Bull. Seismol. Soc. Am. 89, 1401 (1999)

    Google Scholar 

  23. A. Bizzarri, M. Cocco, J. Geophys. Res. 111, B05303 (2006)

    ADS  Google Scholar 

  24. A. Bizzarri, M. Cocco (2006b), J. Geophys. Res. 111, B05304 (2006)

    ADS  Google Scholar 

  25. J.-P. Ampuero, A.M. Rubin, J. Geophys. Res. 113, B01302 (2008)

    ADS  Google Scholar 

  26. A.M. Rubin, J.-P. Ampuero, J. Geophys. Res. 110, B11312 (2005)

    Article  ADS  Google Scholar 

  27. R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 3411 (1967)

    Google Scholar 

  28. Y. Huang, J.-P. Ampuero, J. Geophys. Res. 116, B12307 (2011)

    Article  ADS  Google Scholar 

  29. Y. Ueda, S. Morimoto, S. Kakui, T. Yamamoto, H. Kawamura, Europhys. Lett. 106, 69001 (2014)

    Article  ADS  Google Scholar 

  30. R.C. Viesca, J.R. Rice, J. Geophys. Res. 117, B03104 (2012)

    ADS  Google Scholar 

  31. J.M. Carlson, J.S. Langer, Phys. Rev. Lett. 62, 2632 (1989)

    Article  ADS  Google Scholar 

  32. J.M. Carlson, J.S. Langer, Phys. Rev. A 40, 6470 (1989b)

    Article  MathSciNet  ADS  Google Scholar 

  33. J.M. Carlson, J.S. Langer, B.E. Shaw, C. Tang, Phys. Rev. A 44, 884 (1991)

    Article  ADS  Google Scholar 

  34. J.M. Carlson, J. Geophys. Res. 96, 4255 (1991a)

    Article  ADS  Google Scholar 

  35. J.M. Carlson, Phys. Rev. A 44, 6226 (1991b)

    Article  ADS  Google Scholar 

  36. J.M. Carlson, J.S. Langer, B.E. Shaw, Rev. Mod. Phys. 66, 657 (1994)

    Article  MATH  ADS  Google Scholar 

  37. J. Schmittbuhl, J.-P. Vilotte, S. Roux, J. Geophys. Res. 101, 27741 (1996)

    Article  ADS  Google Scholar 

  38. T. Mori, H. Kawamura, Phys. Rev. Lett. 94, 058501 (2005)

    Article  ADS  Google Scholar 

  39. T. Mori, H. Kawamura, J. Geophys. Res. 111, B07302 (2006)

    ADS  Google Scholar 

  40. T. Mori, H. Kawamura, J. Geophys. Res. 113, B06301 (2008)

    ADS  Google Scholar 

  41. T. Mori, H. Kawamura, Phys. Rev. E 77, 051123 (2008)

    Article  ADS  Google Scholar 

  42. T. Mori, H. Kawamura, J. Geophys. Res. 113, B11305 (2008)

    Article  ADS  Google Scholar 

  43. H. Kawamura, T. Hatano, N. Kato, S. Biswas, B.K. Chakrabarti, Rev. Mod. Phys. 84, 839 (2012)

    Article  ADS  Google Scholar 

  44. T. Cao, K. Aki, Pure Appl. Geophys. 124, 487 (1986)

    Article  ADS  Google Scholar 

  45. A. Ohmura, H. Kawamura, Europhys. Lett. 77, 69001 (2007)

    Article  ADS  Google Scholar 

  46. I. Clancy, D. Corcoran, Phys. Rev. E 80, 016113 (2009)

    Article  ADS  Google Scholar 

  47. C.R. Myers, J.S. Langer, Phys. Rev. E 47, 3048 (1993)

    Article  ADS  Google Scholar 

  48. B.E. Shaw, Geophys. Res. Lett. 21, 1983 (1994)

    Article  ADS  Google Scholar 

  49. S. Ide, H. Aochi, J. Geophys. Res. 110, B11303 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikaru Kawamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, Y., Morimoto, S., Kakui, S. et al. Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model. Eur. Phys. J. B 88, 235 (2015). https://doi.org/10.1140/epjb/e2015-60499-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60499-0

Keywords

Navigation