Skip to main content
Log in

Path integral approach to order by disorder selection in partially polarized quantum spin systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we study the frustrated J 1J 2 quantum Heisenberg model on the square lattice for J 2>J 1/2, in a magnetic field. In this regime the classical system is known to have a degenerate manifold of lowest energy configurations, where standard thermal order by disorder occurs. In order to study its quantum version we use a path integral formulation in terms of coherent states. We show that the classical degeneracy in the plane transverse to the magnetic field is lifted by quantum fluctuations. Collinear states are then selected, in a similar pattern to that set by thermal order by disorder, leaving a Z 2 degeneracy. A careful analysis reveals a purely quantum mechanical effect given by the tunneling between the two minima selected by fluctuations. The effective description contains two planar (XY-like) fields conjugate to the total magnetization and the difference of the two sublattice magnetizations. Disorder in either or both of these fields produces the locking of their conjugate observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Henley, Phys. Rev. Lett. 62, 2056 (1989)

    Article  ADS  Google Scholar 

  2. J. Villain, Z. Phys. B 33, 31 (1979)

    Article  ADS  Google Scholar 

  3. P. Chandra, P. Coleman, A.I. Larkin, Phys. Rev. Lett. 64, 88 (1990)

    Article  ADS  Google Scholar 

  4. D. Loison, P. Simon, Phys. Rev. B 61, 6114 (2000)

    Article  ADS  Google Scholar 

  5. L. Capriotti, A. Fubini, T. Roscilde, V. Tognetti, Phys. Rev. Lett. 92, 157202 (2004)

    Article  ADS  Google Scholar 

  6. R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini, M. Troyer, P. Millet, F. Mila, Phys. Rev. Lett. 85, 1318 (2000)

    Article  ADS  Google Scholar 

  7. P. Carretta, R. Melzi, N. Papinutto, P. Millet, Phys. Rev. Lett. 88, 047601 (2002)

    Article  ADS  Google Scholar 

  8. M. Oshikawa, Phys. Rev. B 61, 3430 (2000)

    Article  ADS  Google Scholar 

  9. A. Tanaka, K. Totsuka, X. Hu, Phys. Rev. B 79, 064412 (2009)

    Article  ADS  Google Scholar 

  10. C.A. Lamas, A. Ralko, D.C. Cabra, D. Poilblanc, P. Pujol, Phys. Rev. Lett. 109, 016403 (2012)

    Article  ADS  Google Scholar 

  11. M.E. Zhitomirsky, A. Honecker, O.A. Petrenko, Phys. Rev. Lett. 85, 3269 (2000)

    Article  ADS  Google Scholar 

  12. P.P. Orth, P. Chandra, P. Coleman, J. Schmalian, Phys. Rev. B 89, 094417 (2014)

    Article  ADS  Google Scholar 

  13. D.C. Cabra, M.D. Grynberg, P.C.W. Holdsworth, P. Pujol, Phys. Rev. B 65, 094418 (2002)

    Article  ADS  Google Scholar 

  14. H.C. Jiang, H. Yao, L. Balents, Phys. Rev. B 86, 024424 (2012)

    Article  ADS  Google Scholar 

  15. A.W. Sandvik, Phys. Rev. B 85, 134407 (2012)

    Article  ADS  Google Scholar 

  16. S.S. Gong, W. Zhu, D.N. Sheng, O.I. Motrunich, M.P.A. Fisher, Phys. Rev. Lett. 113, 027201 (2014)

    Article  ADS  Google Scholar 

  17. C.A. Lamas, S. Capponi, P. Pujol, Phys. Rev. B 84, 115125 (2011)

    Article  ADS  Google Scholar 

  18. E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press, 2013)

  19. J. Kosterlitz, J. Phys. C 7, 1046 (1974)

    Article  ADS  Google Scholar 

  20. X. Plat, S. Capponi, P. Pujol, Phys. Rev. B 85, 174423 (2012)

    Article  ADS  Google Scholar 

  21. X. Plat, Y. Fuji, S. Capponi, P. Pujol, Phys. Rev. B 91, 064411 (2015)

    Article  ADS  Google Scholar 

  22. M. Hasenbusch, K. Pinn, S. Vinti, Phys. Rev. B 59, 11471 (1999)

    Article  ADS  Google Scholar 

  23. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  24. C. Weber, L. Capriotti, G. Misguich, F. Becca, M. Elhajal, F. Mila, Phys. Rev. Lett. 91, 177202 (2003)

    Article  ADS  Google Scholar 

  25. K. Hida, I. Affleck, J. Phys. Soc. Jpn 74, 1849 (2005)

    Article  ADS  Google Scholar 

  26. C.K. Majumdar, D.K. Ghosh, J. Math. Phys. 10, 1388 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Shastry, B. Sutherland, Physica B 108, 1069 (1981)

    Article  Google Scholar 

  28. J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)

    Article  ADS  Google Scholar 

  29. J.M. Matera, C.A. Lamas, J. Phys.: Condens. Matter 26, 326004 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Lamas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamas, C., Cabra, D., Pujol, P. et al. Path integral approach to order by disorder selection in partially polarized quantum spin systems. Eur. Phys. J. B 88, 176 (2015). https://doi.org/10.1140/epjb/e2015-60211-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60211-6

Keywords

Navigation