Skip to main content
Log in

Spectroscopic fingerprints for charge localization in the organic semiconductor (DOEO)4[HgBr4]·TCE

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the organic semiconductor (DOEO)4[HgBr4]·TCE. Localization starts in the temperature region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of inclusions (droplets), and individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types of inclusions of 100–400 nm and 2–5 nm sizes were revealed by transmission electron microscopy. Studying the temperature- and angular dependence of electron spin resonance (ESR) spectra revealed fingerprints of antiferromagnetic contributions as well as paramagnetic resonance spectra of individual localized charge carriers. The results point on coexistence of antiferromagnetic long and short range order as evident from a second ESR line. Photoelectron spectroscopy in the VUV, soft and hard X-ray range shows temperature-dependent effects upon crossing the critical temperatures around 60 K and 150 K. The substantially different probing depths of soft and hard X-ray photoelectron spectroscopy yield information on the surface termination. The combined investigation using complementary methods at the same sample reveals the close relation of changes in the transport properties and in the energy distribution of electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Saito, Y. Yoshida, Top. Curr. Chem. 312, 67 (2012)

    Article  Google Scholar 

  2. W.J.M. Naber, S. Faez, W.G. van der Wiel, J. Phys. D 40, R205 (2007)

    Article  ADS  Google Scholar 

  3. J. Singleton, Ch. Mielke, Contemp. Phys. 43, 63 (2002)

    Article  ADS  Google Scholar 

  4. N. Toyota, M. Lang, J. Müller, Low-dimensional Molecular Metals, Springer Series in Solid-State Sciences (Springer, 2007), Vol. 154

  5. F. Kagawa, T. Sato, K. Miyagawa, K. Kanoda, Y. Tokura, K. Kobayashi, R. Kumai, Y. Murakami, Nat. Phys. 9, 419 (2013)

    Article  Google Scholar 

  6. A.A. Bardin, A.I. Kotov, S.S. Khasanov, G.V. Shilov, L.I. Buravov, L. Ouahab, E.B. Yagubskii, Coord. Chem. 32, 88 (2006)

    Google Scholar 

  7. A. Lapinski, A.I. Kotov, Mol. Phys. 106, 33 (2008)

    Article  ADS  Google Scholar 

  8. A. Lapinski, A.I. Kotov, Chem. Phys. 326, 551 (2006).

    Article  ADS  Google Scholar 

  9. A. Lapinski, A. Gasecka, A. Graja, S. Waplak, A. Ostrowski, A. Kotov, Opt. Mater. 34, 1651 (2012).

    Article  ADS  Google Scholar 

  10. J. Strempfer, S. Francoual, D. Reuther, D. K. Shukla, A. Skaugen, H. Schulte-Schrepping, T. Kracht, H. Franz, J. Synch. Radiat. 20, 541 (2013).

    Article  Google Scholar 

  11. A. Gloskovskii et al., J. Electron Spectrosc. Relat. Phenom. 185, 47 (2012)

    Article  Google Scholar 

  12. J.R. Anderson, G. Kido, Y. Nishina, M. Górska, L. Kowalczyk, Z. Golacki, Phys. Rev. B 41, 1014 (1990)

    Article  ADS  Google Scholar 

  13. A. Chernenkaya, O. Koplak, A. Kotov, R. Morgunov, E. Yagubskii, Phys. Solid State 54, 2391 (2012)

    Article  ADS  Google Scholar 

  14. K. Medjanik, M. de Souza, D. Kutnyakhov, A. Gloskovskii, J. Müller, M. Lang, J.-P. Pouget, P. Foury-Leylekian, A. Moradpour, H.J. Elmers, G. Schönhense, Eur. Phys. J. B 87, 256 (2014)

    Article  ADS  Google Scholar 

  15. M. Sing, U. Schwingenschlögl, R. Claessen, M. Dressel, C.S. Jacobsen, Phys. Rev. B 67, 125402 (2003)

    Article  ADS  Google Scholar 

  16. S. Diehl, T. Methfessel, J. Mueller, M. Lang, M. Huth, M. Jourdan, H.-J. Elmers, arXiv:1410.5245 [cond-mat.str-el] (2014)

  17. J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)

    Article  ADS  Google Scholar 

  18. A. Sekiyama, T. Susaki, A. Fujimori, T. Sasaki, N. Toyota, T. Kondo, G. Saito, M. Tsunekawa, T. Iwasaki, T. Muro, T. Matsushita, S. Suga, H. Ishii, T. Miyahara, Phys. Rev. B 56, 9082 (1997)

    Article  ADS  Google Scholar 

  19. R. Liu, H. Ding, J.C. Campuzano, H.H. Wang, J.M. Williams, K.D. Carlson, Phys. Rev. B 51, 13000 (1995)

    Article  ADS  Google Scholar 

  20. J.E. Downes, K.E. Smith, A.Y. Matsuura, I. Lindau, J.A. Schlueter, Surf. Sci. 551, 219 (2004)

    Article  ADS  Google Scholar 

  21. T. Kiss, A. Chainani, H.M. Yamamoto, T. Miyazaki, T. Akimoto, T. Shimojima, K. Ishizaka, S. Watanabe, C.-T. Chen, A. Fukaya, R. Kato, S. Shin, Nat. Commun. 3, 1089 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Chernenkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koplak, O.V., Chernenkaya, A., Medjanik, K. et al. Spectroscopic fingerprints for charge localization in the organic semiconductor (DOEO)4[HgBr4]·TCE. Eur. Phys. J. B 88, 120 (2015). https://doi.org/10.1140/epjb/e2015-50837-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50837-7

Keywords

Navigation