Skip to main content
Log in

A note on the tensor and vector exchange contributions to \(K \bar{K} \rightarrow K \bar{K}, D \bar{D} \rightarrow D \bar{D} \) and \(\pi ^+ \pi ^-\rightarrow \pi ^+ \pi ^-\) reactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this note we study the tensor and vector exchange contributions to the elastic reactions involving the pseudoscalars mesons \(\pi ^+ \pi ^-\), \(K^{+}K^{-}\) and \(D^{+}D^{-}\). In the case of the tensor-exchange contributions we assume that an intermediate tensor \(f_2(1270)\) is dynamically generated from the interaction of two virtual \(\rho \) mesons, with the use of a pole approximation. The calculation of the two-loop amplitude is facilitated since the triangle loops can be factorized and computed separately. The results show very small contributions coming from the tensor-exchange mechanisms when compared with those from the vector-exchange processes. We compare our results for \(\pi \pi \) and \(K\bar{K}\) scattering with those obtained in other works where the \(f_2(1270)\) is considered as an ordinary \(q\bar{q}\) meson. Our picture provides a smaller contribution but of similar order of magnitude for pion scattering and stabilizes the results in the case of \(K\bar{K}\), allowing us to make estimates for \(D\bar{D}\) scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Notes

  1. The \(f_0\) (1370) appears as a \(\rho \rho \) bound state at 1512 MeV in [29], at \(1532~\textrm{MeV}\) in [30], in the range of 1476–1522 MeV in [37] and in the range of 1410–1500 MeV in [39]. In the PDG it appears in the bracket \(1250-1440~\textrm{MeV}\).

  2. In Refs. [29, 30] the loops were regularized by means of dimensional regularization. The equivalent cutoff needed with the cutoff regularization were in that range of values.

References

  1. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rept. 639, 1–121 (2016). [arXiv:1601.02092] [hep-ph]

    Article  ADS  Google Scholar 

  2. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, S. Yasui, PTEP 2016 no.6, 062C01 (2016)

  3. H.X. Chen, W. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Rept. Prog. Phys. 80(7), 076201 (2017). [arXiv:160908928x] [hep-ph]

    Article  ADS  Google Scholar 

  4. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143–194 (2017). [arXiv:1610.04528] [hep-ph]

    Article  ADS  Google Scholar 

  5. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rept. 668, 1–97 (2017). [arXiv:1611.07920] [hep-ph]

    Article  ADS  Google Scholar 

  6. E. Oset, W.H. Liang, M. Bayar, J.J. Xie, L.R. Dai, M. Albaladejo, M. Nielsen, T. Sekihara, F. Navarra, L. Roca et al., Int. J. Mod. Phys. E 25, 1630001 (2016). [arXiv:1601.03972] [hep-ph]

    Article  ADS  Google Scholar 

  7. F.K. Guo, C. Hanhart, U.G. Meißner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90(1), 015004 (2018) [erratum: Rev. Mod. Phys. 94 no.2, 029901 (2022)] [arXiv:1705.00141] [hep-ph]

  8. A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97, 123–198 (2017). [arXiv:1706.00610] [hep-ph]

    Article  ADS  Google Scholar 

  9. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90(1), 015003 (2018)

    Article  ADS  Google Scholar 

  10. M. Karliner, J.L. Rosner, T. Skwarnicki, Ann. Rev. Nucl. Part. Sci. 68, 17–44 (2018). [arXiv:1711.10626] [hep-ph]

    Article  ADS  Google Scholar 

  11. C.Z. Yuan, Int. J. Mod. Phys. A 33(21), 1830018 (2018). [arXiv:1808.01570] [hep-ex]

    Article  ADS  Google Scholar 

  12. Y.R. Liu, H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Prog. Part. Nucl. Phys. 107, 237–320 (2019). [arXiv:1903.11976] [hep-ph]

    Article  ADS  Google Scholar 

  13. E. van Beveren, G. Rupp, Prog. Part. Nucl. Phys. 117, 103845 (2021). https://doi.org/10.1016/j.ppnp.2020.103845. arXiv:2012.03693 [hep-ph]

    Article  Google Scholar 

  14. J. J. Dudek, https://doi.org/10.1142/9789811219313_0010

  15. J. Bulava, R. Briceño, W. Detmold, M. Döring, R. G. Edwards, A. Francis, F. Knechtli, R. Lewis, S. Prelovsek and S. M. Ryan, et al. [arXiv:2203.03230] [hep-lat]

  16. M. Mai, U.-G. Meißner, C. Urbach, Phys. Rept. 1001, 1 (2023). https://doi.org/10.1016/j.physrep.2022.11.005. arXiv:2206.01477 [hep-ph]

    Article  ADS  Google Scholar 

  17. S. Prelovsek, [arXiv:2310.07341] [hep-lat]

  18. R. L. Workman et al. ( collaboration Particle Data Group), PTEP 2022, 083C01 (2022) https://doi.org/10.1093/ptep/ptac097

  19. J.R. Pelaez, Phys. Rept. 658, 1 (2016). https://doi.org/10.1016/j.physrep.2016.09.001. arXiv:1510.00653 [hep-ph]

    Article  ADS  Google Scholar 

  20. J.R. Peláez, A. Rodas, J.R. de Elvira, Eur. Phys. J. ST 230, 1539 (2021). https://doi.org/10.1140/epjs/s11734-021-00142-9. arXiv:2101.06506 [hep-ph]

    Article  Google Scholar 

  21. J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 ( 1997), note [Erratum: Nucl.Phys.A 652, 407–409 (1999)], https://doi.org/10.1016/S0375-9474(97)00160-7, arXiv:hep-ph/9702314

  22. N. Kaiser, Eur. Phys. J. A 3, 307 (1998). https://doi.org/10.1007/s100500050183

    Article  ADS  Google Scholar 

  23. A. Dobado, J.R. Pelaez, Phys. Rev. D 56, 3057 (1997). https://doi.org/10.1103/PhysRevD.56.3057. arXiv:hep-ph/9604416

  24. J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. D 59, 074001 ( 1999), note [Erratum: Phys.Rev.D 60, 099906 (1999), Erratum: Phys.Rev.D 75, 099903 (2007)], https://doi.org/10.1103/PhysRevD.59.074001, arXiv:hep-ph/9804209

  25. V.E. Markushin, Eur. Phys. J. A 8, 389 (2000). https://doi.org/10.1007/s100500070092. arXiv:hep-ph/0005164

    Article  ADS  Google Scholar 

  26. W.H. Liang, E. Oset, Phys. Lett. B 737, 70 (2014). https://doi.org/10.1016/j.physletb.2014.08.030. arXiv:1406.7228 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.-J. Xie, L.-R. Dai, E. Oset, Phys. Lett. B 742, 363 (2015). https://doi.org/10.1016/j.physletb.2015.02.006. arXiv:1409.0401 [hep-ph]

    Article  ADS  Google Scholar 

  28. L.M. Abreu, N. Ikeno, E. Oset, Phys. Rev. D 108, 016007 (2023). https://doi.org/10.1103/PhysRevD.108.016007. arXiv:2305.02848 [hep-ph]

    Article  ADS  Google Scholar 

  29. L.S. Geng, E. Oset, Phys. Rev. D 79, 074009 (2009). https://doi.org/10.1103/PhysRevD.79.074009

  30. R. Molina, D. Nicmorus, E. Oset, Phys. Rev. D 78, 114018 (2008). https://doi.org/10.1103/PhysRevD.78.114018

    Article  ADS  Google Scholar 

  31. M. Bando, T. Kugo, K. Yamawaki, Phys. Rept. 164, 217 (1988)

    Article  ADS  Google Scholar 

  32. M. Bando, T. Kugo, S. Uehara, K. Yamawaki, T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985)

    Article  ADS  Google Scholar 

  33. U.G. Meissner, Phys. Rept. 161, 213 (1988)

    Article  ADS  Google Scholar 

  34. H. Nagahiro, L. Roca, A. Hosaka, E. Oset, Phys. Rev. D 79, 014015 (2009)

    Article  ADS  Google Scholar 

  35. J.M. Dias, G. Toledo, L. Roca, E. Oset, Phys. Rev. D 103(11), 116019 (2021)

    Article  ADS  Google Scholar 

  36. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425–432 (1989)

    Article  ADS  Google Scholar 

  37. D. Gülmez, U.G. Meißner, J.A. Oller, Eur. Phys. J. C 77(7), 460 (2017)

    Article  ADS  Google Scholar 

  38. L.S. Geng, R. Molina, E. Oset, Chin. Phys. C 41(12), 124101 (2017)

    Article  ADS  Google Scholar 

  39. M.L. Du, D. Gülmez, F.K. Guo, U.G. Meißner, Q. Wang, Eur. Phys. J. C 78(12), 988 (2018)

    Article  ADS  Google Scholar 

  40. R. Molina, L. S. Geng, E. Oset, PTEP 2019, no.10, 103B05 (2019)

  41. H. Nagahiro, J. Yamagata-Sekihara, E. Oset, S. Hirenzaki, R. Molina, Phys. Rev. D 79, 114023 (2009). [arXiv:0809.3717] [hep-ph]

    Article  ADS  Google Scholar 

  42. A. Martinez Torres, L. S. Geng, L. R. Dai, B. X. Sun, E. Oset, B. S. Zou, Phys. Lett. B 680, 310 (2009)

  43. L.S. Geng, F.K. Guo, C. Hanhart, R. Molina, E. Oset, B.S. Zou, Eur. Phys. J. A 44, 305 (2010)

    Article  ADS  Google Scholar 

  44. Lian-Rong Dai, E. Oset, Eur. Phys. J. A 49, 130 (2013)

  45. L. R. Dai, J. J. Xie, E. Oset, Phys. Rev. D 91 (2015) no.9, 094013 [arXiv:1503.02463] [hep-ph]

  46. D. Gamermann, J. Nieves, E. Oset, E. Ruiz Arriola, Phys. Rev. D 81 (2010), 014029 [arXiv:0911.4407] [hep-ph]

  47. E. Argyres, A. Contogouris, S. Ray, and M. Svec, Annals of Physics 85, 283 ( 1974), https://doi.org/10.1016/0003-4916(74)90283-8,

  48. J.F. Donoghue, C. Ramirez, G. Valencia, Phys. Rev. D 39, 1947 (1989)

    Article  ADS  Google Scholar 

  49. A. Dobado, J.R. Pelaez, Phys. Rev. D 65, 077502 (2002)

    Article  ADS  Google Scholar 

  50. M. Suzuki, Phys. Rev. D 47, 1043–1047 (1993)

    Article  ADS  Google Scholar 

  51. E. Katz, A. Lewandowski, M.D. Schwartz, Phys. Rev. D 74, 086004 (2006)

    Article  ADS  Google Scholar 

  52. D. Toublan, Phys. Rev. D 53, 6602-6607 (1996) [erratum: Phys. Rev. D 57, 4495 (1998)]

  53. B. Ananthanarayan, Phys. Rev. D 58, 036002 (1998). [arXiv:hep-ph/9802338] [hep-ph]

    Article  ADS  Google Scholar 

  54. G. Ecker, C. Zauner, Eur. Phys. J. C 52, 315–323 (2007)

  55. J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D 59, 074001 (1999) [erratum: Phys. Rev. D 60, 099906 (1999); erratum: Phys. Rev. D 75, 099903 (2007)]

  56. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325–345 (1995)

    Article  ADS  Google Scholar 

  57. E. Oset, A. Ramos, Nucl. Phys. A 635, 99–120 (1998)

    Article  ADS  Google Scholar 

  58. J.A. Oller, U.G. Meissner, Phys. Lett. B 500, 263–272 (2001)

    Article  ADS  Google Scholar 

  59. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 725, 181–200 (2003)

    Article  ADS  Google Scholar 

  60. S. Sakai, L. Roca, E. Oset, Phys. Rev. D 96, 054023 (2017). [arXiv:1704.02196] [hep-ph]

  61. A. Bramon, A. Grau, G. Pancheri, Phys. Lett. B 283, 416 (1992). https://doi.org/10.1016/0370-2693(92)90041-2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of P.C.S.B and L.M.A. is partly supported by the Brazilian agencies CNPq (Grant Numbers 309950/2020-1, 400215/2022- 5, 200567/2022-5), FAPESB (Grant Number INT0007/2016) and CNPq/FAPERJ under the Project INCT-Física Nuclear e Aplicaçães (Contract No. 464898/2014-5). This work of J. S. is partly supported by the National Natural Science Foundation of China under Grants No. 12247108 and the China Postdoctoral Science Foundation under Grant No. 2022M720359. This work is also partly supported by the Spanish Ministerio de Economia y Competitividad (MINECO) and European FEDER funds under Contracts No. FIS2017-84038-C2-1-P B, PID2020-112777GB-I00, and by Generalitat Valenciana under contract PROMETEO/2020/023. This project has received funding from the European Union Horizon 2020 research and innovation programme under the program H2020-INFRAIA-2018-1, grant agreement No. 824093 of the STRONG-2020 project. This research is also supported by the Munich Institute for Astro-, Particle and BioPhysics (MIAPbP) which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2094 -390783311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano M. Abreu.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, L.M., Song, J., Brandão, P.C.S. et al. A note on the tensor and vector exchange contributions to \(K \bar{K} \rightarrow K \bar{K}, D \bar{D} \rightarrow D \bar{D} \) and \(\pi ^+ \pi ^-\rightarrow \pi ^+ \pi ^-\) reactions. Eur. Phys. J. A 60, 76 (2024). https://doi.org/10.1140/epja/s10050-024-01300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01300-y

Navigation