Skip to main content
Log in

Allowed and forbidden \(\beta \)-decay log ft values of neutron-rich Pb and Bi isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(\beta \)-decay log ft values for \(^{210-215}\)Pb \(\rightarrow \) \(^{210-215}\)Bi and \(^{210-215}\)Bi \(\rightarrow \) \(^{210-215}\)Po transitions in the north-east region of \(^{208}\)Pb nuclei are estimated using the proton-neutron quasiparticle random phase approximation (pn-QRPA) model. The pn-QRPA equations were solved using the schematic model approach. The Woods–Saxon (WS) potential was inserted as a mean-field basis and nuclei were treated as spherical. Allowed Gamow–Teller (GT) and first-forbidden (FF) transitions were investigated in the particle-hole (ph) channel. The calculated log ft values of the allowed GT and FF transitions using the pn-QRPA model with WS potential were found closer to the experimental values. Later we performed calculation of \(\beta \)-decay rates in stellar environment. Here we solved the random phase approximation (RPA) equations in deformed Nilsson basis, both in the particle-particle (pp) and particle-hole (ph) channels. Allowed \(\beta \)-decay and unique first-forbidden (U1F) rates were calculated in stellar matter. For certain cases, the calculated U1F contribution was much more than the allowed \(\beta \)-decay rates under prevailing stellar conditions, in line with previous findings. Increasing temperature of the stellar core affected the allowed GT rates more than the U1F rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request. [Author’s comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980)

    Article  ADS  Google Scholar 

  2. I.N. Borzov, Nucl. Phys. A 777, 645 (2006)

    Article  ADS  Google Scholar 

  3. E.K. Warburton, J.A. Becker, D.J. Millener, B.A. Brown, Ann. Phys. 187, 471 (1988)

    Article  ADS  Google Scholar 

  4. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  5. K.L. Kratz, J.P. Bitouzet, F.K. Thielemann, P. Möller, B. Pfeiffer, Astrophys. J. 403, 216 (1993)

    Article  ADS  Google Scholar 

  6. J.J. Cowan, F.K. Thielemann, J.W. Truran, Phys. Rep. 208, 267 (1991)

    Article  ADS  Google Scholar 

  7. S.E. Woosley, J.R. Wilson, G.J. Mathews, R.D. Hoffman, B.S. Meyer, Astrophys. J. 433, 229 (1994)

    Article  ADS  Google Scholar 

  8. S. Wanajo, Y. Ishimaru, Nucl. Phys. A 777, 676 (2006)

  9. F.K. Thielemann, M. Eichler, I.V. Panov, B. Wehmeyer, Ann. Rev. Nucl. Part. Sci. 67, 253 (2017)

    Article  ADS  Google Scholar 

  10. T. Suzuki, T. Yoshida, T. Kajino, T. Otsuka, Phys. Rev. C 85(1), 015802 (2012)

    Article  ADS  Google Scholar 

  11. M. Arnould, Astron. Astrophys. 46, 117–125 (1976)

  12. B. Andel, P. Van Duppen, A.N. Andreyev, A. Blazhev, H. Grawe, R. Lică, Phys. Rev. C 104(5), 054301 (2021)

    Article  ADS  Google Scholar 

  13. S. Sharma, P. C. Srivastava, A. Kumar, T. Suzuki, Phys. Rev. C 106(2), 024333 (2022)

    Article  ADS  Google Scholar 

  14. J.A. Halbleib, R.A. Sorensen, Nucl. Phys. A 98, 542 (1967)

    Article  ADS  Google Scholar 

  15. S. Ünlü, H. Bircan, N. Çakmak, C. Selam, Pram. J. Phys. 97, 121 (2023)

    Article  Google Scholar 

  16. J.-U. Nabi, N. Çakmak, Z. Iftikhar, Eur. Phys. J. A 52, 5 (2016)

    Article  ADS  Google Scholar 

  17. J.-U. Nabi, N. Çakmak, S. Stoica, Z. Iftikhar, Phys. Scr. 90, 115301 (2015)

    Article  ADS  Google Scholar 

  18. J.-U. Nabi, N. Çakmak, M. Majid, C. Selam, Nucl. Phys. A 957, 1–21 (2017)

    Article  ADS  Google Scholar 

  19. N. Çakmak, S. Ünlü, C. Selam, Pram. J. Phys. 75(4), 649–663 (2010)

    Article  Google Scholar 

  20. N. Çakmak, S. Ünlü, C. Selam, Phys. At. Nuc. 75, 8 (2012)

    Article  Google Scholar 

  21. N. Çakmak, K. Manisa, S. Ünlü, C. Selam, Pram. J. Phys. 74, 541 (2010)

    Article  Google Scholar 

  22. N. Çakmak, Azerbaijan J. Phys. 15(2), 560–562 (2010)

    Google Scholar 

  23. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 1 (Benjamin, W.A. Inc, New York, 1969)

    Google Scholar 

  24. V.G. Soloviev, Theory of Complex Nuclei (Pergamon, New York, 1976)

    Google Scholar 

  25. P. Möller, J.R. Nix, Nucl. Phys. A 536, 20–60 (1992)

    Article  ADS  Google Scholar 

  26. E.K. Warburton, I.S. Towner, B.A. Brown, Phys. Rev. C 49, 824 (1994)

    Article  ADS  Google Scholar 

  27. O. Civitarese, F. Krmpotića, O.A. Rossoa, Nucl. Phys. A 453(1), 45–57 (1985)

    Article  ADS  Google Scholar 

  28. K. Muto, E. Bender, T. Oda, H.V. Klapdor-Kleingrothaus, Z Phys. A. Hadr. Nucl. 341(4), 407–415 (1992)

    Article  ADS  Google Scholar 

  29. J.-U. Nabi, H.V. Klapdor-Kleingrothaus, Eur. Phys. J. A 5, 337 (1999)

    Article  ADS  Google Scholar 

  30. J.-U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 88, 237 (2004)

    Article  ADS  Google Scholar 

  31. H. Homma, E. Bender, M. Hirsch, K. Muto, H.V. Klapdor-Kleingrothaus, T. Oda, Phys. Rev. C 54, 2972 (1996)

    Article  ADS  Google Scholar 

  32. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016)

    Article  ADS  Google Scholar 

  33. F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, G. Audi, Chin. Phys. C 45, 030001 (2021)

    Article  ADS  Google Scholar 

  34. N.B. Gove, M.J. Martin, At. Data. Nucl. Data. Tab 10, 205 (1971)

    Article  ADS  Google Scholar 

  35. P. Gysbers, G. Hagen, J.D. Holt, G.R. Jansen, T.D. Morris, P. Navratil, T. Papenbrock, S. Quaglioni, A. Schwenk, S.R. Stroberg, K.A. Wendt, Nat. Phys. 15, 428 (2019)

  36. National Nuclear Data Center (NNDC), online retrieval system https://www.nndc.bnl.gov/nudat3. Accessed May 2023

  37. I.N. Borzov, Phys. Rev. C 71, 065801 (2005)

    Article  ADS  Google Scholar 

  38. A. Staudt, E. Bender, K. Muto, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44, 79 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.-U. Nabi and A. Mehmood would like to acknowledge the support of the Higher Education Commission Pakistan through project number 20-15394/NRPU/R &D/HEC/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Ullah.

Ethics declarations

Code Availability

Code/software cannot be made available for reasons disclosed in the code availability statement. [Author’s comment: The code is not available due to IP and copyrights policies. We are considering to publish our code in a reputable journal. Till that time anyone interested may contact the corresponding author for the code.]

Additional information

Communicated by Takashi Nakatsukasa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, N., Nabi, JU., Mehmood, A. et al. Allowed and forbidden \(\beta \)-decay log ft values of neutron-rich Pb and Bi isotopes. Eur. Phys. J. A 60, 75 (2024). https://doi.org/10.1140/epja/s10050-024-01298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01298-3

Navigation