Skip to main content
Log in

Application of relativistic continuum random phase approximation to giant dipole resonance of \(^{208}\)Pb and \(^{132}\)Sn

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The relativistic continuum random phase approximation (RCRPA) is applied to describe the properties of isovector giant dipole resonances (IVGDR) in \(^{208}\)Pb and \(^{132}\)Sn with NL3 effective interaction. We analyze the strength distribution, various sum rules, centroid energies and the integral photoabsorption cross sections of the pygmy dipole resonance (PDR) and giant dipole resonance (GDR), the results are compared to the values obtained by discretized RRPA and available experimental data. Difference between the results obtained by RRPA and RCRPA is found, which may due to the different ways in treating the contribution of continuum. The calculated centroid energies of GDR can reproduce the experimental data well for \(^{208}\)Pb and \(^{132}\)Sn. A better agreement with photoabsorption cross section data is obtained for \(^{132}\)Sn in the RCRPA calculation. By correlating the excitation energy (the electric dipole polarizability) of GDR to the nuclear matter properties, we could constrain the density dependence of symmetry energy. The deduced nuclear symmetry energy is located in the range 30.3–36.5 MeV (30.8–32.8 MeV), and the slope parameter L essentially covers the range of 40.1–106.1 MeV (40.0–63.0 MeV) at the saturation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statementy

This manuscript has associated data in a data repository. [Author’s comment: This is a theoretical study and the experimental data used here are referenced or the source is acknowledged. And all the data generated in this article are included in the manuscript.]

References

  1. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  2. P. Ring, Prog. Part. Nucl. Phys. 37, 197 (1996)

    ADS  Google Scholar 

  3. J. Meng et al., Prog. Part. Nucl. Phys. 57, 470 (2006)

    ADS  Google Scholar 

  4. D. Vretenar et al., Phys. Rep. 409, 101 (2005)

    ADS  Google Scholar 

  5. T. Nikšić et al., Prog. Part. Nucl. Phys. 66(3), 519–548 (2011)

    ADS  Google Scholar 

  6. L.S. Geng et al., Prog. Theor. Phys. 113, 785 (2005)

    ADS  Google Scholar 

  7. X.W. Xia et al., At. Data Nucl. Data Tables 121–122, 1 (2018)

    ADS  Google Scholar 

  8. K.Y. Zhang et al., At. Data Nucl. Data Tables 144, 101488 (2022)

    Google Scholar 

  9. R. An et al., Phys. Rev. C 105, 014325 (2022)

    ADS  Google Scholar 

  10. R. An et al., Commun. Theor. Phys. 75, 035301 (2023)

    ADS  Google Scholar 

  11. Z.Y. Ma et al., Nucl. Phys. A 686, 173 (2001)

    ADS  Google Scholar 

  12. P. Ring et al., Nucl. Phys. A 694, 249 (2001)

    ADS  Google Scholar 

  13. Z.Y. Ma et al., Nucl. Phys. A 703, 222 (2002)

    ADS  Google Scholar 

  14. J. Piekarewicz, Phys. Rev. C 64, 024307 (2001)

    ADS  Google Scholar 

  15. N. Paar et al., Phys. Rev. C 67, 034312 (2003)

    ADS  Google Scholar 

  16. N. Paar et al., Phys. Rev. C 69, 054303 (2004)

    ADS  Google Scholar 

  17. Z.M. Niu et al., Phys. Rev. C 95, 044301 (2017)

    ADS  Google Scholar 

  18. Z.H. Wang et al., Phys. Rev. C 101, 064306 (2020)

    ADS  Google Scholar 

  19. Z.Y. Ma et al., Phys. Rev. C 55, 2385 (1997)

    ADS  Google Scholar 

  20. D. Vretenar et al., Phys. Lett. B 487, 334 (2000)

    ADS  Google Scholar 

  21. D. Vretenar et al., Nucl. Phys. A 692, 496 (2001)

    ADS  Google Scholar 

  22. N. Paar et al., Phys. Lett. B 624, 195 (2005)

    ADS  Google Scholar 

  23. J. Piekarewicz, Phys. Rev. C 73, 044325 (2006)

    ADS  Google Scholar 

  24. L.G. Cao, Z.Y. Ma, Phys. Rev. C 66, 024311 (2002)

    ADS  Google Scholar 

  25. L.G. Cao, Z.Y. Ma, Phys. Rev. C 71, 034305 (2005)

    ADS  Google Scholar 

  26. L.G. Cao, Z.Y. Ma, Mod. Phys. Lett. A 19, 2845 (2004)

    ADS  Google Scholar 

  27. G. Kružić et al., Phys. Rev. C 102, 044315 (2020)

    ADS  Google Scholar 

  28. S.Y. Chang et al., Phys. Rev. C 105, 034330 (2022)

    ADS  Google Scholar 

  29. D. Vale et al., Phys. Rev. C 103, 064307 (2021)

    ADS  Google Scholar 

  30. J. Dobaczewski et al., Phys. Rev. C 53, 2809 (1996)

    ADS  Google Scholar 

  31. N. Sandulescu et al., Phys. Rev. C 61, 061301(R) (2000)

    ADS  Google Scholar 

  32. L.G. Cao, Z.Y. Ma, Eur. Phys. J. A 22, 189 (2004)

    ADS  Google Scholar 

  33. M. Grasso et al., Phys. Rev. C 64, 064321 (2001)

    ADS  Google Scholar 

  34. H. Lv et al., Chin. Phys. Lett. 34, 082101 (2017)

    ADS  Google Scholar 

  35. L. Liu et al., Chin. Phys. C 45, 044105 (2021)

    ADS  Google Scholar 

  36. D. Yang et al., Chin. Phys. C 37, 124102 (2013)

    ADS  Google Scholar 

  37. S.Y. Zhong et al., Sci. China Phys. Mech. Astron. 65, 262011 (2022)

    ADS  Google Scholar 

  38. S.S. Zhang et al., J. Phys. G Nucl. Part. Phys. 49, 025102 (2022)

    ADS  Google Scholar 

  39. T.T. Sun et al., Phys. Rev. C 90, 054321 (2014)

    ADS  Google Scholar 

  40. M. Shi et al., Phys. Rev. C 92, 054313 (2015)

    ADS  Google Scholar 

  41. K.M. Ding et al., Phys. Rev. C 98, 014316 (2018)

    ADS  Google Scholar 

  42. L.L. Li et al., Phys. Rev. C 85, 024312 (2012)

    ADS  Google Scholar 

  43. D. Yang et al., Phys. Rev. C 82, 054305 (2010)

    ADS  Google Scholar 

  44. D. Yang et al., Commun. Theor. Phys. 54, 716 (2010)

    ADS  Google Scholar 

  45. D. Yang et al., Commun. Theor. Phys. 54, 723 (2010)

    ADS  Google Scholar 

  46. J. Daoutidis, P. Ring, Phys. Rev. C 80, 024309 (2009)

    ADS  Google Scholar 

  47. A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)

    ADS  Google Scholar 

  48. J. Gibelin et al., Phys. Rev. Lett. 101, 212503 (2008)

    ADS  Google Scholar 

  49. O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)

    ADS  Google Scholar 

  50. X.W. Sun et al., Chin. Phys. C 42, 014101 (2018)

    ADS  Google Scholar 

  51. N. Ryezayeva et al., Phys. Rev. Lett. 89, 272502 (2002)

    Google Scholar 

  52. T. Hartmann et al., Phys. Rev. Lett. 93, 192501 (2004)

    ADS  Google Scholar 

  53. A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007)

    ADS  Google Scholar 

  54. L.G. Cao, Z.Y. Ma, Chin. Phys. Lett. 25, 1625 (2008)

    ADS  Google Scholar 

  55. A. Carbone et al., Phys. Rev. C 81, 041301(R) (2010)

    ADS  Google Scholar 

  56. C. Tao et al., Nucl. Sci. Technol. 24, 030502 (2013)

    Google Scholar 

  57. Z. Zhang, L.W. Chen, Phys. Rev. C 90, 064317 (2014)

    ADS  Google Scholar 

  58. J. Xu, Chin. Phys. Lett. 38, 042101 (2021)

    ADS  Google Scholar 

  59. X. Roca-Maza, N. Paar, Prog. Part. Nucl. Phys. 101, 96 (2018)

    ADS  Google Scholar 

  60. P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)

    ADS  Google Scholar 

  61. G. Co’ et al., Phys. Rev. C 87, 034305 (2013)

    ADS  Google Scholar 

  62. J. Terasaki et al., Phys. Rev. C 74, 044301 (2006)

    ADS  Google Scholar 

  63. D. Vretenar et al., J. Phys. G Nucl. Part. Phys. 35, 014039 (2008)

    ADS  Google Scholar 

  64. S. Shlomo, G.F. Bertsch, Nucl. Phys. A 243, 507 (1975)

    ADS  Google Scholar 

  65. G.F. Bertsch, S.F. Tsai, Phys. Rep. 18, 126 (1975)

    ADS  Google Scholar 

  66. K.F. Liu, N. Van Giai, Phys. Lett. B 65, 23 (1976)

    ADS  Google Scholar 

  67. I. Hamamoto, H. Sagawa, X.Z. Zhang, Phys. Rev. C 55, 2361 (1997)

    ADS  Google Scholar 

  68. I. Hamamoto, H. Sagawa, X.Z. Zhang, Phys. Rev. C 57, R1064 (1998)

    ADS  Google Scholar 

  69. I. Hamamoto, H. Sagawa, Phys. Rev. C 60, 064314 (1999)

    ADS  Google Scholar 

  70. I. Hamamoto, H. Sagawa, Phys. Rev. C 62, 024319 (2000)

    ADS  Google Scholar 

  71. I. Hamamoto, H. Sagawa, Phys. Rev. C 66, 044315 (2002)

    ADS  Google Scholar 

  72. K. Wehrberger, F. Beck, Phys. Rev. C 37, 1148 (1988)

    ADS  Google Scholar 

  73. M. L’Huillier, N. Van Giai, Phys. Rev. C 39, 2022 (1989)

  74. G.A. Lalazissis et al., Phys. Rev. C 55, 540 (1997)

    ADS  Google Scholar 

  75. A. Veyssiere et al., Nucl. Phys. A 159, 561 (1970)

  76. A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999)

    ADS  Google Scholar 

  77. A.E.L. Dieperink et al., Phys. Rev. C 68, 064307 (2003)

    ADS  Google Scholar 

  78. D. Vretenar et al., Phys. Rev. C 85, 044317 (2012)

    ADS  Google Scholar 

  79. X. Roca-Maza et al., Phys. Rev. C 85, 024601 (2012)

    ADS  Google Scholar 

  80. E. Litvinova et al., Phys. Rev. C 79, 054312 (2009)

    ADS  Google Scholar 

  81. M. Spieker et al., Phys. Rev. Lett. 125, 102503 (2020)

    ADS  Google Scholar 

  82. M. Jingo et al., Eur. Phys. J. A 54, 234 (2018)

    ADS  Google Scholar 

  83. S. Gandolfi et al., Eur. Phys. J. A 50, 10 (2014)

    ADS  Google Scholar 

  84. J.M. Lattimer, A.W. Steiner, Eur. Phys. J. A 50, 40 (2014)

    ADS  Google Scholar 

  85. C.J. Horowitz et al., J. Phys. G Nucl. Part. Phys. 41, 093001 (2014)

    ADS  Google Scholar 

  86. M. Baldo, G.F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016)

    ADS  Google Scholar 

  87. B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000)

    ADS  Google Scholar 

  88. M. Centelles et al., Phys. Rev. Lett. 102, 122502 (2009)

    ADS  Google Scholar 

  89. R. An et al., Nucl. Sci. Techn. 34, 119 (2023)

    Google Scholar 

  90. L. Trippa et al., Phys. Rev. C 77, 061304(R) (2008)

    ADS  Google Scholar 

  91. X. Roca-Maza et al., Phys. Rev. C 88, 024316 (2013)

    ADS  Google Scholar 

  92. M.B. Tsang et al., Phys. Lett. B 795, 533 (2019)

    ADS  Google Scholar 

  93. L. Zhang et al., Eur. Phys. J. A 48, 30 (2012)

    ADS  Google Scholar 

  94. J. Piekarewicz, Phys. Rev. C 83, 034319 (2011)

    ADS  Google Scholar 

  95. M. Dutra et al., Phys. Rev. C 90, 055203 (2014)

    ADS  Google Scholar 

  96. A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)

    ADS  Google Scholar 

  97. J. Piekarewicz et al., Phys. Rev. C 85, 041302(R) (2012)

    ADS  Google Scholar 

  98. J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013)

    ADS  Google Scholar 

  99. B.A. Li, X. Han, Phys. Lett. B 727, 276 (2013)

    ADS  Google Scholar 

  100. D. Adhikari et al., Phys. Rev. Lett. 126, 172502 (2021)

    ADS  Google Scholar 

  101. B.T. Reed et al., Phys. Rev. Lett. 126, 172503 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 12275025, 11975096, 12135004, 11635003, 11961141004, and the Fundamental Research Funds for the Central Universities under Grant No. 2020NTST06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Gang Cao, Chun-Lei Zhang or Feng-Shou Zhang.

Additional information

Communicated by Denis Lacroix.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Yu, RQ., Cao, LG. et al. Application of relativistic continuum random phase approximation to giant dipole resonance of \(^{208}\)Pb and \(^{132}\)Sn. Eur. Phys. J. A 60, 61 (2024). https://doi.org/10.1140/epja/s10050-024-01288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01288-5

Navigation