Skip to main content
Log in

Spectrum and decay properties of bottomonium mesons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We calculate the spectrum and wave functions (WFs) of various states of bottomonium(\(b\overline{b}\)) mesons using a non-relativistic quark potential model (NRQPM). The calculated WFs are used to compute the radiative widths of various states of \(b\overline{b}\). The strong decays widths of bottomonium states are also calculated using \(^3P_0\) model by choosing simple harmonic oscillator wave functions (SHOWFs). The \(\beta \) of SHOWFs for various states of the mesons are measured by fitting the numerical wave functions. The radiative and strong decay widths are used to calculate the branching ratios of \(b\overline{b}\) mesons. We also compare our calculated masses and widths with available experimental data. On basis of this comparison, it is suggested that \(\Upsilon (10860)\) is the 5S state of \(b\overline{b}\) mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This work is theoretical and have no experimental data.]

References

  1. S.W. Herb et al., Phys. Rev. Lett. 39, 252 (1977)

    Article  ADS  Google Scholar 

  2. G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 108, 152001 (2012)

  3. A. Chisholm, Measurements of the \(\chi _c\) and \(\chi _b\) quarkonium states in pp collisions with the ATLAS experiment. CERN-THESIS-2014-071

  4. D.M.J. Lovelock et al., Phys. Rev. Lett. 54, 377 (1985)

    Article  ADS  Google Scholar 

  5. C. Bebek, J. Haggerty, J. Izen, C. Longuemare, W. Loomis, F. Pipkin, J. Rohlf, W. Tanenbaum, R. Wilson, A. Sadoff et al., Phys. Rev. Lett. 46(2), 84 (1981)

  6. R. Mizuk et al. (Belle Collaboration), J. High Energy Phys. 10, 1–30 (2019)

  7. V.D. Shiltsev, High-energy particle colliders: past 20 years, next 20 years, and beyond. Phys. Uspekhi 55(10), 965 (2012)

    Article  ADS  Google Scholar 

  8. J. De Blas, M. Cepeda, J. D‘Hondt, R. Ellis, C. Grojean, B. Heinemann, F. Maltoni, A. Nisati, E. Petit, R. Rattazzi et al., J. High Energy Phys. 1 (2020)

  9. M. Shah, A. Parmar, P.C. Vinodkumar, Phys. Rev. D 86, 034015 (2012)

  10. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  11. S. Godfrey, Phys. Rev. D 31, 2375 (1985)

    Article  ADS  Google Scholar 

  12. S. Godfrey, N. Isgur, Phys. Rev. D 34, 899 (1986)

    Article  ADS  Google Scholar 

  13. S. Godfrey, Phys. Rev. D 70, 054017 (2004)

    Article  ADS  Google Scholar 

  14. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005)

  15. S. Godfrey, K. Moats, Phys. Rev. D 92, 054034 (2015)

    Article  ADS  Google Scholar 

  16. J.Z. Wang, Z.F. Sun, X. Liu, T. Matsuki, Eur. Phys. J. C 78, 915 (2018)

    Article  ADS  Google Scholar 

  17. Z. Zhao, K. Xu, A. Limphirat, W. Sreethawong, N. Tagsinsit, A. Kaewsnod, X. Liu, K. Khosonthongkee, S. Cheedket, Y. Yan, [arXiv:2304.06243 [hep-ph]]

  18. J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481 (2005)

    Article  ADS  Google Scholar 

  19. J. Segovia, P. G. Ortega, D. R. Entem, F. Fernandez, Phys. Rev. D 93 (2016)

  20. J. Segovia, D.R. Entem, F. Fernandez, Phys. Lett. B 662, 33 (2008)

    Article  ADS  Google Scholar 

  21. W.-J. Deng, H. Liu, L.-C. Gui, X.-H. Zhong, PRD 95, 074002 (2017)

    Article  ADS  Google Scholar 

  22. J. Segovia, P.G. Ortega, D.R. Entem, F. Fernández, Phys. Rev. D 93, 074027 (2016)

    Article  ADS  Google Scholar 

  23. N. Isgur, J. Paton, Phys. Rev. D 31, 2910 (1985)

    Article  ADS  Google Scholar 

  24. N. Akbar, M. Atif Sultan, B. Masud, F. Akram, Phys. Rev. D 95, 074018 (2017)

    Article  ADS  Google Scholar 

  25. J. Ferretti, E. Santopinto, Phys. Rev. D 97, 114020 (2018)

    Article  ADS  Google Scholar 

  26. I. Asghar, B. Masud, E.S. Swanson, F. Akram, M.A. Sultan, Eur. Phys. J. A 54, 127 (2018)

    Article  ADS  Google Scholar 

  27. I. Asghar, F. Akram, B. Masud, M.A. Sultan, Phys. Rev. D 100, 096002 (2019)

    Article  ADS  Google Scholar 

  28. R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

  29. L. Micu, Nucl. Phys. B 10, 521 (1969)

    Article  ADS  Google Scholar 

  30. E.S. Ackleh, T. Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996)

    Article  ADS  Google Scholar 

  31. R. L. Workman and Others, Rev. Particle Phys. PTEP, vol. 2022, p. 083C01 (2022)

  32. J. Ferretti, E. Santopinto, Higher mass bottomonia. Phys. Rev. D 90, 094022 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosheen Akbar.

Additional information

Communicated by Heng-Tong Ding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, I., Akbar, N. Spectrum and decay properties of bottomonium mesons. Eur. Phys. J. A 60, 58 (2024). https://doi.org/10.1140/epja/s10050-024-01279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01279-6

Navigation