Skip to main content
Log in

Molecular states from \(\bar{B}^{(*)}N\) interactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In 2019, two new structures \(\Lambda _b(6146)\) and \(\Lambda _b(6152)\) were observed by the LHCb Collaboration at the invariant mass spectrum of \(\Lambda _b^0\pi ^{+}\pi ^{-}\), which aroused a hot discussion about their inner structures. The \(\Lambda _b(6146)\) and \(\Lambda _b(6152)\) might still be molecular states because their masses are close to threshold of a \(\bar{B}\) meson and a nucleon. In this work, we perform a systematical investigation of possible heavy baryonic molecular states from the \(\bar{B}N\) interaction. Since the \(\bar{B}N\) channel strongly couples to the \(\bar{B}^{*}N\) channel, the possible \(\bar{B}N{-}\bar{B}^{*}N\) bound states are also studied. The interaction of the system considered is described by the t-channel \(\sigma \), \(\pi \), \(\eta \),\(\omega \), and \(\rho \) mesons exchanges. By solving the non-relativistic Schrödinger equation with the obtained one-boson-exchange potentials, the \(\bar{B}^{(*)}N\) bound states with different quantum numbers are searched. The calculation suggests that recently observed \(\Lambda _b(6146)\) can be assigned as a P-wave \(\bar{B}N\) molecular state with spin parity \(J^P=3/2^{+}\) or a \(\bar{B}N{-}\bar{B}^{*}N\) bound state. However, assignment of \(\Lambda _b(6152)\) as an F-wave \(\bar{B}N\) molecular is disfavored. The \(\Lambda _b(6152)\) can be explained as meson–baryon molecular state with a small \(\bar{B}N\) component. The calculation also predict the existence of two \(\bar{B}N{-}\bar{B}^{*}N\) bound states with \(J^P=1/2^{-}\) and \(J^P=3/2^{-}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the relevant data are already contained in the manuscript.]

Notes

  1. In Ref. [23], the decay widths for \(\Lambda _b(6146)\rightarrow \Sigma ^{(*)}\pi \) were calculated as 4.18 MeV and for \(\Lambda _b(6152)\rightarrow \Sigma ^{(*)}\pi \) as 4.39 MeV, assuming \(\Lambda _b(6146)\) and \(\Lambda _b(6152)\) to be 3-quark states.

References

  1. P.A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020)

  2. R. Aaij et al. [LHCb], Phys. Rev. Lett. 122, 222001 (2019)

  3. R. Aaij et al. [LHCb], Sci. Bull. 66, 1278–1287 (2021)

  4. C.J. Xiao, Y. Huang, Y.B. Dong, L.S. Geng, D.Y. Chen, Phys. Rev. D 100, 014022 (2019)

    ADS  Google Scholar 

  5. F. Yang, Y. Huang, H.Q. Zhu, Sci. China Phys. Mech. Astron. 64, 121011 (2021)

    ADS  Google Scholar 

  6. J. He, D.Y. Chen, Eur. Phys. J. C 79, 887 (2019)

    ADS  Google Scholar 

  7. E.Y. Paryev, Nucl. Phys. A 1023, 122452 (2022)

    Google Scholar 

  8. F.L. Wang, R. Chen, X. Liu, Phys. Rev. D 103, 034014 (2021)

    ADS  Google Scholar 

  9. J.T. Zhu, S.Y. Kong, Y. Liu, J. He, Eur. Phys. J. C 80, 1016 (2020)

    ADS  Google Scholar 

  10. K.L. Wang, Y.X. Yao, X.H. Zhong, Q. Zhao, Phys. Rev. D 96, 116016 (2017)

    ADS  Google Scholar 

  11. K. Gandhi, A. Kakadiya, Z. Shah, A.K. Rai, AIP Conf. Proc. 2220, 140015 (2020)

    Google Scholar 

  12. Y. Kawakami, M. Harada, Phys. Rev. D 99, 094016 (2019)

    ADS  Google Scholar 

  13. Y. Kawakami, M. Harada, Phys. Rev. D 97, 114024 (2018)

    ADS  Google Scholar 

  14. O. Romanets, C. Garcia-Recio, L.L. Salcedo, J. Nieves, L. Tolos, Acta Phys. Polon. Supp. 6, 973–978 (2013)

    Google Scholar 

  15. J.X. Lu, Y. Zhou, H.X. Chen, J.J. Xie, L.S. Geng, Phys. Rev. D 92, 014036 (2015)

    ADS  Google Scholar 

  16. W.H. Liang, C.W. Xiao, E. Oset, Phys. Rev. D 89, 054023 (2014)

    ADS  Google Scholar 

  17. C. Garcia-Recio, J. Nieves, O. Romanets, L.L. Salcedo, L. Tolos, Phys. Rev. D 87, 034032 (2013)

    ADS  Google Scholar 

  18. Y. Huang, H.Q. Zhu, Phys. Rev. D 104, 056027 (2021)

    ADS  Google Scholar 

  19. R. Aaij et al. [LHCb], Phys. Rev. Lett. 123, 152001 (2019)

  20. A.M. Sirunyan et al. [CMS], Phys. Lett. B 803, 135345 (2020)

  21. Q. Mao, H.X. Chen, H.M. Yang, Universe 6, 86 (2020)

    ADS  Google Scholar 

  22. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 101, 074026 (2020)

    ADS  Google Scholar 

  23. B. Chen, S.Q. Luo, X. Liu, T. Matsuki, Phys. Rev. D 100, 094032 (2019)

    ADS  Google Scholar 

  24. K.L. Wang, Q.F. Lü, X.H. Zhong, Phys. Rev. D 100, 114035 (2019)

    ADS  Google Scholar 

  25. W. Liang, Q.F. Lü, X.H. Zhong, Phys. Rev. D 100, 054013 (2019)

    ADS  Google Scholar 

  26. G.L. Yu, Z.G. Wang, X.W. Wang. arXiv:2109.02217 [hep-ph]

  27. A. Kakadiya, Z. Shah, K. Gandhi, A.K. Rai. arXiv:2108.11062 [hep-ph]

  28. T.F. Caramés, A. Valcarce, Phys. Rev. D 95, 094011 (2017)

    ADS  Google Scholar 

  29. B. Wang, L. Meng, S.L. Zhu, Phys. Rev. D 101, 094035 (2020)

    ADS  Google Scholar 

  30. H.Y. Cheng, C.Y. Cheung, G.L. Lin, Y.C. Lin, T.M. Yan, H.L. Yu, Phys. Rev. D 47, 1030–1042 (1993)

    ADS  Google Scholar 

  31. T.M. Yan, H.Y. Cheng, C.Y. Cheung, G.L. Lin, Y.C. Lin, H.L. Yu, Phys. Rev. D 46, 1148-1164 (1992). [erratum: Phys. Rev. D 55, 5851 (1997)]

  32. M.B. Wise, Phys. Rev. D 45, R2188 (1992)

    ADS  Google Scholar 

  33. G. Burdman, J.F. Donoghue, Phys. Lett. B 280, 287–291 (1992)

    ADS  Google Scholar 

  34. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, G. Nardulli, Phys. Rep. 281, 145–238 (1997)

    ADS  Google Scholar 

  35. A.F. Falk, M.E. Luke, Phys. Lett. B 292, 119–127 (1992)

    ADS  Google Scholar 

  36. C. Isola, M. Ladisa, G. Nardulli, P. Santorelli, Phys. Rev. D 68, 114001 (2003)

    ADS  Google Scholar 

  37. X. Liu, Z.G. Luo, Y.R. Liu, S.L. Zhu, Eur. Phys. J. C 61, 411–428 (2009)

    ADS  Google Scholar 

  38. R. Chen, Z.F. Sun, X. Liu, S.L. Zhu, Phys. Rev. D 100, 011502 (2019)

    ADS  Google Scholar 

  39. W.A. Bardeen, E.J. Eichten, C.T. Hill, Phys. Rev. D 68, 054024 (2003)

    ADS  Google Scholar 

  40. L. Zhao, L. Ma, S.L. Zhu, Phys. Rev. D 89, 094026 (2014)

    ADS  Google Scholar 

  41. E.J. Garzon, E. Oset, Eur. Phys. J. A 48, 5 (2012)

    ADS  Google Scholar 

  42. E. Oset, A. Ramos, Nucl. Phys. A 635, 99–120 (1998)

    ADS  Google Scholar 

  43. B. Borasoy, Phys. Rev. D 59, 054021 (1999)

    ADS  Google Scholar 

  44. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950–2962 (1994)

    ADS  Google Scholar 

  45. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1–89 (1987)

    ADS  Google Scholar 

  46. G. Breit, Phys. Rev. 34, 553–573 (1929)

    ADS  MathSciNet  Google Scholar 

  47. G. Breit, Phys. Rev. 36, 383–397 (1930)

    ADS  Google Scholar 

  48. N. Yalikun, Y.H. Lin, F.K. Guo, Y. Kamiya, B.S. Zou, Phys. Rev. D 104, 094039 (2021)

    ADS  Google Scholar 

  49. L. Zhao, N. Li, S.L. Zhu, B.S. Zou, Phys. Rev. D 87, 054034 (2013)

    ADS  Google Scholar 

  50. Y. Dong, A. Faessler, T. Gutsche, Q. Lü, V.E. Lyubovitskij, Phys. Rev. D 96, 074027 (2017)

    ADS  Google Scholar 

  51. D.Y. Chen, X. Liu, T. Matsuki, Phys. Rev. D 87, 054006 (2013)

    ADS  Google Scholar 

  52. H. Xu, J.J. Xie, X. Liu, Eur. Phys. J. C 76, 192 (2016)

    ADS  Google Scholar 

  53. M. Ablikim et al. [BESIII], Phys. Rev. D 90, 032007 (2014)

  54. X. Liu, B. Zhang, S.L. Zhu, Phys. Lett. B 645, 185–188 (2007)

    ADS  Google Scholar 

  55. P. Colangelo, F. De Fazio, T.N. Pham, Phys. Lett. B 542, 71–79 (2002)

    ADS  Google Scholar 

  56. C. Meng, K.T. Chao, Phys. Rev. D 75, 114002 (2007)

    ADS  Google Scholar 

  57. X. Liu, Z.T. Wei, X.Q. Li, Eur. Phys. J. C 59, 683–689 (2009)

    ADS  Google Scholar 

  58. L. Zhao, L. Ma, S.L. Zhu, Nucl. Phys. A 942, 18–38 (2015)

    ADS  Google Scholar 

  59. J. Binstock, R. Bryan, Phys. Rev. D 4, 1341–1352 (1971)

  60. A. Calle Cordon, E. Ruiz Arriola, AIP Conf. Proc. 1030, 334–338 (2008)

    ADS  Google Scholar 

  61. M.J. Yan, F.Z. Peng, M. Sánchez Sánchez, M. Pavon Valderrama, Phys. Rev. D 104, 114025 (2021)

    ADS  Google Scholar 

  62. Y. Huang, Cj. Xiao, Q.F. Lü, R. Wang, J. He, L. Geng, Phys. Rev. D 97, 094013 (2018)

    ADS  Google Scholar 

  63. Y. Yamaguchi, S. Ohkoda, S. Yasui, A. Hosaka, Phys. Rev. D 87, 074019 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant no. 12104076, the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant no. KJQN201800510), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant no. IOSKL2017KF19). Yin Huang acknowledges the YST Program of the APCTP, the support from the Development and Exchange Platform for the Theoretic Physics of Southwest Jiaotong University under Grants no.11947404 and no.12047576, and the National Natural Science Foundation of China under Grant no.12005177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Huang.

Additional information

Communicated by Che-Ming Ko

Appendix A

Appendix A

In this section, we collect the potential related to the Fig. 1 in the coordinate space. For the \(\bar{B}N \rightarrow \bar{B}N \) reaction, we have

$$\begin{aligned} V_{a/b}(r)_{\rho ^0}&=\frac{\beta {}gg_v}{2\sqrt{2}}\Bigg [Y_1(\Lambda ,m_{\rho ^0},r)\nonumber \\&\quad +{{\mathcal {V}}}_0(m_{\rho ^0},\frac{\Bigg (m_{\overline{B}^0}+2m_p)}{{4m^2_p}m_{\overline{B}^0}},r\Bigg )\Bigg ], \end{aligned}$$
(47)
$$\begin{aligned} V_{a/b}(r)_{\omega }&=\frac{3\beta gg_v}{2\sqrt{2}}\Bigg [Y_1(\Lambda ,m_{\omega },r)\nonumber \\ {}&\quad +{{\mathcal {V}}}_0(m_{\omega },\frac{\Bigg (m_{\overline{B}^0}+2m_p)}{{4m^2_p}m_{\overline{B}^0}},r\Bigg )\Bigg ], \end{aligned}$$
(48)
$$\begin{aligned} v_{a/b}(r)_{\sigma }&=-g_{\sigma }g_{\sigma NN} \Bigg [Y_1(\Lambda ,m_{\sigma },r)\nonumber \\ {}&\quad -{{\mathcal {V}}}_0\Bigg (m_{\sigma },\frac{1}{4m^2_P},r\Bigg )\Bigg ], \end{aligned}$$
(49)
$$\begin{aligned} V_{c/d}(r)_{\rho ^{\pm }}&=\frac{\beta {}g g_v}{\sqrt{2}}\Bigg [Y_1(\Lambda ,m_{\rho ^{\pm }},r)\nonumber \\&\quad +{{\mathcal {V}}}_0(m_{\rho ^{\pm }},\frac{\Bigg (m_{\overline{B}^0}+m_{B^{-}}+4m_p)}{{4m^2_p}(m_{\overline{B}^0}+m_{B^{-}})},r\Bigg )\Bigg ]. \end{aligned}$$
(50)

The \(\bar{B}N\rightarrow \bar{B}^{*}N\) reaction potentials can be shown

$$\begin{aligned} V_{e/f}(r)_\pi&=-\frac{g(D+F)}{2\sqrt{2}ff_\pi }{{\mathcal {V}}}_1(m_{\pi ^0},r), \end{aligned}$$
(51)
$$\begin{aligned} V_{e/f}(r)_\eta&=\frac{g(D-3F)}{6\sqrt{2}ff_\pi }{{\mathcal {V}}}_1(m_{\eta },r), \end{aligned}$$
(52)
$$\begin{aligned} V_{e/f}(r)_{\rho ^0}&=\frac{\lambda gg_v}{\sqrt{2}m_p}{{\mathcal {V}}}_2(m_{\rho ^0},r), \end{aligned}$$
(53)
$$\begin{aligned} V_{e/f}(r)_{\omega }&=\frac{3\lambda gg_v}{\sqrt{2}m_p}{{\mathcal {V}}}_2(m_{\omega },r), \end{aligned}$$
(54)
$$\begin{aligned} V_{g/h}(r)_{\pi ^{\pm } }&=\frac{g(D+F)}{\sqrt{2}ff_\pi }{{\mathcal {V}}}_1(m_{\pi ^{\pm }},r), \end{aligned}$$
(55)
$$\begin{aligned} V_{g/h}(r)_{\rho ^{\pm }}&=\frac{2\lambda gg_v}{\sqrt{2}m_p}{{\mathcal {V}}}_2(m_{\rho ^{\pm }},r). \end{aligned}$$
(56)

Last, we give the \(\bar{B}^{*}N \rightarrow \bar{B}^{*}N \) reaction potentials

$$\begin{aligned} V_{i/j}(r)_{\pi ^0}&=-\frac{g(D+F)}{2\sqrt{2}ff_\pi }{{\mathcal {V}}}_3(m_{\pi ^0},r), \end{aligned}$$
(57)
$$\begin{aligned} V_{i/j}(r)_\eta&=\frac{g(D-3F)}{6\sqrt{2}ff_\pi }{{\mathcal {V}}}_3(m_{\eta },r), \end{aligned}$$
(58)
$$\begin{aligned} V_{i/j}(r)_{\rho ^0}&=-\frac{\beta {}gg_v}{2\sqrt{2}}\Bigg [(Y_1(\Lambda ,m_{\rho ^0},r)\nonumber \\&\quad +{{\mathcal {V}}}_0(m_{\rho ^0},\frac{\Bigg (m_{\overline{B}^{*(0/-)}}+2m_p)}{{4m^2_p}m_{\overline{B}^{*(0/-)}}},r\Bigg )\Bigg ]\vec {\epsilon }_{\lambda _1}\cdot \vec {\epsilon }_{\lambda _3}^{\dagger }\nonumber \\&\quad +\frac{\lambda {}gg_v}{\sqrt{2}}{{\mathcal {V}}}_4\left( m_{\rho ^0},\frac{1}{m_{\overline{B}^{*(0/-)}}},r\right) , \end{aligned}$$
(59)
$$\begin{aligned} V_{i/j}(r)_{\omega }&=-\frac{3\beta {}gg_v}{2\sqrt{2}}\Bigg [(Y_1(\Lambda ,m_{\omega },r)\nonumber \\&\quad +{{\mathcal {V}}}_0(m_{\omega },\frac{\Bigg (m_{\overline{B}^{*(0/-)}}+2m_p)}{{4m^2_p}m_{\overline{B}^{*(0/-)}}},r\Bigg )\Bigg ]\vec {\epsilon }_{\lambda _1}\cdot \vec {\epsilon }_{\lambda _3}^{\dagger }\nonumber \\&\quad +\frac{3\lambda {}gg_v}{\sqrt{2}}{{\mathcal {V}}}_4\left( m_{\omega },\frac{1}{m_{\overline{B}^{*(0/-),}}},\right) , \end{aligned}$$
(60)
$$\begin{aligned} V_{i/j}(r)_{\sigma }&=-g_{\sigma }g_{\sigma {}NN}\Bigg [Y_1(\Lambda ,m_{\sigma },r)\nonumber \\&\quad -{{\mathcal {V}}}_0\Bigg (m_{\sigma },\frac{1}{4m^2_P},r\Bigg )\Bigg ]\vec {\epsilon }_{\lambda _1}\cdot \vec {\epsilon }_{\lambda _3}^{\dagger }, \end{aligned}$$
(61)
$$\begin{aligned} V_{k/l}(r)_{\pi ^+ }&=\frac{g(D+F)}{\sqrt{2}ff_\pi }{{\mathcal {V}}}_3(\pi ^{\pm },r), \end{aligned}$$
(62)
$$\begin{aligned} V_{k/l}(r)_{\rho ^{\pm }}&=\frac{\beta {}g_1g_v}{\sqrt{2}}\Bigg [Y_1(\Lambda ,m_{\rho ^+},r)\nonumber \\&\quad {+}{{\mathcal {V}}}_0(m_{\rho ^{\pm }},\frac{\Bigg (m_{\overline{B}^{*0}}{+}m_{B^{*-}}{+}4m_p)}{{4m^2_p}(m_{\overline{B}^{*0}}{+}m_{B^{*-}})},r\Bigg )\Bigg ]\vec {\epsilon }_{\lambda _1}\cdot \vec {\epsilon }_{\lambda _3}^{\dagger }\nonumber \\&\quad -\frac{2\lambda {}g_1g_v}{\sqrt{2}}{{\mathcal {V}}}_4\left( m_{\rho ^{\pm }},\frac{2}{(m_{B^{*-}}+m_{\overline{B}^{*0}})},r\right) .\nonumber \\ \end{aligned}$$
(63)

In the above, the following equations are used

$$\begin{aligned} {{\mathcal {V}}}_0(m,\mu _1,r)&=\mu _1\left[ \frac{1}{4}\nabla _r^2Y_1(\Lambda ,m_{\rho ^0},r)\right. \left. -\frac{1}{2}\left\{ \nabla _r^2,Y_1(\Lambda ,m,r)\right\} \right] \nonumber \\&\quad +\frac{1}{16m_{p}^2}\nabla _r^2Y_1(\Lambda ,m,r)\nonumber \\&\quad +\mu _1\left( \vec {\sigma }\cdot \vec {L}\frac{1}{r}\frac{\partial }{\partial r}Y_1(\Lambda ,m,r)\right) , \end{aligned}$$
(64)
$$\begin{aligned} {{\mathcal {V}}}_1(m,r)&=\frac{1}{3}(\vec {\sigma }\cdot \vec {\epsilon }_{\lambda _3}^\dagger )(-\nabla _r^2Y_1(\Lambda ,m,r)\nonumber \\&\quad +\frac{1}{3}S(\hat{r},\vec {\sigma },\vec {\epsilon }_{\lambda _3}^\dagger ) \left( -r\frac{\partial }{\partial r}\frac{1}{r}\frac{\partial }{\partial r}Y_1(\Lambda ,m,r)\right) , \end{aligned}$$
(65)
$$\begin{aligned} {{\mathcal {V}}}_2(m,r)&=-\vec {\epsilon }_{\lambda _3}^\dagger \cdot \vec {L} \left( \frac{1}{r}(\frac{\partial }{\partial r})\right) Y_1(\Lambda ,m,r)\nonumber \\&\quad +\frac{1}{3}(\vec {\sigma }\cdot \vec {\epsilon }_{\lambda _3}^\dagger )(-\nabla _r^2Y_1(\Lambda ,m,r))\nonumber \\&\quad -\frac{1}{6}S(\hat{r},\vec {\sigma },\vec {\epsilon }_{\lambda _3}^\dagger )\left( -r\frac{\partial }{\partial r}\frac{1}{r}\frac{\partial }{\partial r}Y_1(\Lambda ,m,r)\right) , \end{aligned}$$
(66)
$$\begin{aligned} {{\mathcal {V}}}_3(m,r)&=\frac{1}{3}(\vec {\sigma }\cdot (-i\vec {\epsilon }_{\lambda _3}^\dagger \times \vec {\epsilon }_{\lambda _1}))(-\nabla _r^2Y_1(\Lambda ,m,r))\nonumber \\&\quad +\frac{1}{3}S(\hat{r},\vec {\sigma },(-i\vec {\epsilon }_{\lambda _3}^\dagger \times \vec {\epsilon }_{\lambda _1}))\nonumber \\&\quad \times \left( -r\frac{\partial }{\partial r}\frac{1}{r}\frac{\partial }{\partial r} Y_1(\Lambda ,m,r)\right) , \end{aligned}$$
(67)
$$\begin{aligned} {{\mathcal {V}}}_4(m,\mu _2,r)&=\frac{1}{m_p} \left[ \frac{1}{3}i(\vec {\epsilon }_{\lambda _1}\times \vec {\sigma })\cdot (\vec {\epsilon }_{\lambda _3}^\dagger ) (-\nabla _r^2Y_1(\Lambda ,m,r))\right. \nonumber \\&\quad \left. +\frac{1}{3}S(\hat{r},i(\vec {\epsilon }_{\lambda _1}\times \vec {\sigma }),\vec {\epsilon }_{\lambda _3}^\dagger ) \left( -r\frac{\partial }{\partial r}\frac{1}{r}\frac{\partial }{\partial r}Y_1(\Lambda ,m,r)\right) \right. \nonumber \\&\quad \left. -\frac{1}{3}i(\vec {\epsilon }_{\lambda _3}^\dagger \times \vec {\sigma })\cdot (\vec {\epsilon }_{\lambda _1})(-\nabla _r^2Y_1(\Lambda ,m,r))\right. \nonumber \\&\quad \left. -\frac{1}{3}S(\hat{r},i(\vec {\epsilon }_{\lambda _3}^\dagger \times \vec {\sigma }),\vec {\epsilon }_{\lambda _1})\left( -r\frac{\partial }{\partial r}\frac{1}{r} \frac{\partial }{\partial r}Y_1(\Lambda ,m,r)\right) \right] \nonumber \\&\quad -\mu _2\left( \frac{1}{3}(\vec {\epsilon }_{\lambda _1}\cdot \vec {\epsilon }_{\lambda _3}^\dagger )(-\nabla _r^2Y_1(\Lambda ,m,r))\right. \nonumber \\&\quad \left. +\frac{1}{3}S(\hat{r},\vec {\epsilon }_{\lambda _1},\vec {\epsilon }_{\lambda _3}^\dagger ) \left( -r\frac{\partial }{\partial r}\frac{1}{r}\frac{\partial }{\partial r}Y_1(\Lambda ,m,r)\right) \right) .\nonumber \\ \end{aligned}$$
(68)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, ZY., Zhu, H.Q., Chen, QH. et al. Molecular states from \(\bar{B}^{(*)}N\) interactions. Eur. Phys. J. A 59, 262 (2023). https://doi.org/10.1140/epja/s10050-023-01167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01167-5

Navigation