Skip to main content
Log in

Cluster radioactivity half-lives of trans-lead nuclei with a statistical physical preformation factor

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present work, based on Wentzel-Kramers-Brillouin (WKB) theory, considering the cluster preformation probability (\(P_{c}\)) in statistical physical way (Eur Phys J A 41:197, 2009), we systematically investigate the cluster radioactivity half-lives of 22 trans-lead nuclei ranging from \(^{221}\)Fr to \(^{242}\)Cm. For comparison, a universal decay law (UDL) proposed by Qi et al. (Phys Rev C 80:044326, 2009), a model-independent formula for cluster radioactivity half-lives proposed by Balasubramaniam et al. (Phys Rev C 70:017301, 2004) and a general law for the emission of charged particles and exotic cluter radioactivity proposed by Sahu et al. (Nucl Phys A 908:17, 2013) are also used. The calculated results in our work, UDL, Balasubramaniam’s formula as well as Sahu’ s formula are basically consistent and can well reproduce the experimental data. In addition, we extend this model to predict the half-lives for 51 nuclei, whose cluster radioactivity is energetically allowed or observed but yet not quantified in NUBASE2020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The citable references (DOI) are https://doi.org/10.1103/PhysRevC.82.024311 and https://doi.org/10.1142/S0218301322500094.]

References

  1. A. S\(\check{a}\)ndulescu, J. Phys. G Nucl. Part. Phys. 15, 529 (1989)

  2. A. S\(\check{a}\)ndulescu, D. N. Poenaru, W Greiner, Sov. J. Part. Nucl. 11, 528 (1980)

  3. H.J. Rose, G.A. Jones, Nature 307, 245 (1984)

    ADS  Google Scholar 

  4. S.W. Barwick, P.B. Price, J.D. Stevenson, Phys. Rev. C 31, 1984 (1985)

    ADS  Google Scholar 

  5. P.B. Price, Annu. Rev. Nucl. Part. Sci. 39, 19 (1989)

    ADS  Google Scholar 

  6. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. Lett. 107, 062503 (2011)

    ADS  Google Scholar 

  7. R.K. Gupta, W. Greiner, Int. J. Mod. Phys. E 3, 335 (1994)

    ADS  Google Scholar 

  8. R. Bonetti, A. Guglielmetti, Rom. Rep. Phys. 59, 301 (2007)

    Google Scholar 

  9. J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)

    ADS  Google Scholar 

  10. Y.Z. Wang, F.Z. Xing, Y. Xiao et al., Chin. Phys. C 45, 044111 (2021)

    ADS  Google Scholar 

  11. X. Liu, J.D. Jiang, L.J. Qi et al., Chin. Phys. C 47, 094103 (2023)

    ADS  Google Scholar 

  12. J.T. Majekodunmi, M. Bhuyan, K. Anwar et al., Chin. Phys. C 47, 074106 (2023)

    ADS  Google Scholar 

  13. V. Dehghani, S.A. Alavi, R. Razavi et al., Chin. Phys. C 46, 044104 (2022)

    ADS  Google Scholar 

  14. H.M. Liu, Y.T. Zou, X. Pan et al., Phys. Scr. 96, 125322 (2021)

    ADS  Google Scholar 

  15. H.M. Liu, Y.T. Zou, X. Pan et al., Chin. Phys. C 45, 024108 (2021)

    ADS  Google Scholar 

  16. J.L. Chen, J.Y. Xu, J.G. Deng et al., Eur. Phys. J. A 55, 241 (2019)

    Google Scholar 

  17. D.X. Zhu, H.M. Liu, Y.Y. Xu et al., Chin. Phys. C 4, 044106 (2022)

    ADS  Google Scholar 

  18. Y.Y. Xu, D.X. Zhu, X. Pan et al., Chin. Phys. C 46, 114103 (2022)

    ADS  Google Scholar 

  19. D.X. Zhu, Y.Y. Xu, H.M. Liu et al., Nucl. Sci. Technol. 33, 122 (2022)

    Google Scholar 

  20. Y.Y. Xu, D.X. Zhu, X. Chen et al., Eur. Phys. J. A 58, 163 (2022)

    ADS  Google Scholar 

  21. L.J. Qi, D.M. Zhang, S. Luo et al., Chin. Phys. C 47, 014101 (2023)

    ADS  Google Scholar 

  22. L.J. Qi, D.M. Zhang, S. Luo et al., Chin. Phys. C 47, 064107 (2023)

    ADS  Google Scholar 

  23. H.C. Manjunatha, N. Sowmya, P.S. Damodara Gupta et al., Nucl. Sci. Technol. 32, 130 (2021)

    Google Scholar 

  24. S. Luo, Y.Y. Xu, D.X. Zhu et al., Eur. Phys. J. A 58, 244 (2022)

    ADS  Google Scholar 

  25. M. Ismail, A.Y. Ellithi, A.E. Depsy et al., Int. J. Mod. Phys. E 25, 1650069 (2016)

  26. Z.Z. Ren, C. Xu, Z.J. Wang, Phys. Rev. C 70, 034304 (2004)

    ADS  Google Scholar 

  27. Y.B. Qian, Z.Z. Ren, J. Phys. G Nucl. Part. Phys. 39, 015103 (2012)

    ADS  Google Scholar 

  28. O.A.P. Tavares, E.L. Medeiros, Phys. Scr. 86, 015201 (2012)

    ADS  Google Scholar 

  29. Z.Q. Sheng, D.D. Ni, Z.Z. Ren, J. Phys. G Nucl. Part. Phys. 38, 055103 (2011)

    ADS  Google Scholar 

  30. H.G. de Carvalho, J.B. Martins, O.A.P. Tavares, Phys. Rev. C 34, 2261 (1986)

    ADS  Google Scholar 

  31. G.L. Zhang, Y.J. Yao, M.F. Guo et al., Nucl. Phys. A 951, 86 (2016)

    ADS  Google Scholar 

  32. X.J. Bao, H.F. Zhang, B.S. Hu et al., J. Phys. G Nucl. Part. Phys. 39, 095103 (2012)

    ADS  Google Scholar 

  33. K.P. Santhosh, B. Pri, M.S. Unnikrishnan, Nucl. Phys. A 889, 29 (2012)

    ADS  Google Scholar 

  34. H.F. Zhang, J.M. Dong, G. Royer et al., Phys. Rev. C 80, 037307 (2009)

    ADS  Google Scholar 

  35. A. Soylu, S. Evlice, Nucl. Phys. A 936, 59 (2015)

    ADS  Google Scholar 

  36. M. Warda, L.M. Robledo, Phys. Rev. C 84, 044608 (2011)

    ADS  Google Scholar 

  37. M. Goncalves, S.B. Duarte, Phys. Rev. C 48, 2409 (1993)

    ADS  Google Scholar 

  38. D.D. Ni, Z.Z. Ren, T.K. Dong et al., Phys. Rev. C 78, 044310 (2008)

    ADS  Google Scholar 

  39. K. Wei, H.F. Zhang, Phys. Rev. C 102, 034318 (2020)

    ADS  Google Scholar 

  40. R. Blendowske, H. Walliser, Phys. Rev. Lett. 61, 1930 (1988)

    ADS  Google Scholar 

  41. D.N. Poenaru, W. Greiner, J. Phys. G Nucl. Part. Phys. 17, S443 (1991)

    ADS  Google Scholar 

  42. K.P. Santhosh, T.A. Jose, Indian J. Phys. 95, 121 (2021)

    ADS  Google Scholar 

  43. K.P. Santhosh, T.A. Jose, Nucl. Phys. A 992, 121626 (2019)

    Google Scholar 

  44. K.P. Santhosh, T.A. Jose, Phys. Rev. C 99, 064604 (2019)

    ADS  Google Scholar 

  45. D.D. Ni, Z.Z. Ren, Phys. Rev. C 82, 024311 (2010)

    ADS  Google Scholar 

  46. S. Kumar, R.K. Raj, Phys. Rev. C 55, 1 (1997)

    Google Scholar 

  47. B. Buck, A.C. Merchant, J. Phys. G Nucl. Part. Phys. 15, 615 (1989)

    ADS  Google Scholar 

  48. P. E. Hodgson and E. B\(\check{e}\)t\(\acute{a}\)k, Phys. Rep. 374, 1 (2003)

  49. K.P. Santhosh, R.K. Biju, Ann. Phys. 334, 280 (2013)

    ADS  Google Scholar 

  50. G. Royer, R. Moustabchir, Nucl. Phys. A 683, 182 (2001)

    ADS  Google Scholar 

  51. K.P. Santhosh, B. Priyanka, Eur. Phys. J. A 49, 66 (2013)

    ADS  Google Scholar 

  52. A. Dumitrescu, D.S. Delion, At. Data Nucl. Data Tables 145, 101501 (2022)

    Google Scholar 

  53. G. Royer, R.K. Gupta, V.Y. Denisov, Nucl. Phys. A 275, 275 (1998)

    ADS  Google Scholar 

  54. M.A. Hooshyar, I. Reichstein, F.B. Malik et al., Nuclear Fission and Cluster Radioactivity (Springer, Berlin, 2005)

    Google Scholar 

  55. J.M. Dong, H.F. Zhang, J.Q. Li Royer et al., Eur. Phys. J. A 41, 197 (2009)

    ADS  Google Scholar 

  56. Y.H. Gao, J.P. Cui, Y.Z. Wang et al., Sci. Rep. 10, 9119 (2020)

    ADS  Google Scholar 

  57. F.G. Kondev, M. Wang, W.J. Huang et al., Chin. Phys. C 45, 030001 (2021)

    ADS  Google Scholar 

  58. M. Wang, W.J. Huang, F.G. Kondev et al., Chin. Phys. C 45, 030003 (2021)

    ADS  Google Scholar 

  59. R. Kumar, M.K. Sharma, Phys. Rev. C 85, 054612 (2012)

    ADS  Google Scholar 

  60. K. Wei, H.F. Zhang, Phys. Rev. C 96, 021601 (2017)

    ADS  Google Scholar 

  61. M. Ismail, A.Y. Ellithi, M.M. Selim et al., Phys. Scr. 95, 075303 (2020)

    ADS  Google Scholar 

  62. C. Qi, F.R. Xu, R.J. Liotta et al., Phys. Rev. C 80, 044326 (2009)

    ADS  Google Scholar 

  63. M. Balasubramaniam, S. Kumarasamy, N. Arunachalam et al., Phys. Rev. C 70, 017301 (2004)

    ADS  Google Scholar 

  64. B. Sahu, R. Paira, B. Rath, Nucl. Phys. A 908, 40 (2013)

    ADS  Google Scholar 

  65. F. Saidi, M.R. Oudih, M. Fellah et al., Mod. Phys. Lett. A 30, 1550150 (2015)

  66. L.J. Qi, D.M. Zhang, S. Luo et al., Phys. Rev. C 108, 014325 (2023)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank X. Y. Zhu, M. Li, Y. Y. Xu and D. X. Zhu for useful discussions. This work is supported in part by the National Natural Science Foundation of China (Grant No.12175100 and No.11975132), the construct program of the key discipline in hunan province, the Research Foundation of Education Bureau of Hunan Province, China (Grant No.18A237), the Shandong Province Natural Science Foundation, China (Grant No.ZR2022JQ04), the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China (Grant No.2019KFZ10), the Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20220993).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hua Li.

Additional information

Communicated by Chong Qi

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, LJ., Zhang, DM., Luo, S. et al. Cluster radioactivity half-lives of trans-lead nuclei with a statistical physical preformation factor. Eur. Phys. J. A 59, 255 (2023). https://doi.org/10.1140/epja/s10050-023-01162-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01162-w

Navigation