Skip to main content
Log in

Twist-4 proton GTMDs in the light-front quark–diquark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

By integrating across the light-cone energy, totally unintegrated, off-diagonal quark–quark generalized parton correlation functions can yield generalized transverse-momentum dependent parton distributions (GTMDs). We have obtained the twist-4 GTMDs for the case of proton in the light-front quark–diquark model. We have decoded the quark–quark GTMD correlator for proton and solved the parametrization equations for Dirac matrix structure at twist-4. We have derived the explicit equations of GTMDs for the diquark being scalar or vector leading to the results for the struck quark being a u or d quark. Being a multidimensional function, the dependence is studied with two variables at a time, keeping the others fixed. Transverse-momentum dependent form factors have been obtained from GTMDs via integration over the longitudinal momentum fraction x of the quark. We have debated over the possibility to specify the initial and final state polarizations of the smacked quark and the nucleon in twist-4 GTMDs as well as the Wigner distributions. Additionally, from twist-4 GTMDs, we have deduced the twist-4 T-even TMDs and found its synchronization with the already published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since this is a theoretical work, there is no data to be deposited. All the results and calculations have been included in the ms.]

References

  1. M. Gluck, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)

    ADS  Google Scholar 

  2. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne (1998). arXiv:hep-ph/9803445

  3. J.C. Collins, D.E. Soper, Nucl. Phys. B 194, 445 (1982)

  4. P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461, 197 (1996). (Erratum: Nucl. Phys. B 484, 538 (1997))

    ADS  Google Scholar 

  5. D.W. Sivers, Phys. Rev. D 41, 83 (1990)

    ADS  Google Scholar 

  6. D. Boer, P.J. Mulders, Phys. Rev. D 57, 5780 (1998)

    ADS  Google Scholar 

  7. A. Kotzinian, Nucl. Phys. B 441, 234 (1995)

    ADS  Google Scholar 

  8. J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981). (Erratum: Nucl. Phys. B 213, 545 (1983))

    ADS  Google Scholar 

  9. M. Radici, J. Phys. Conf. Ser. 527, 012025 (2014)

    Google Scholar 

  10. D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, J. Hořejši, Fortsch. Phys. 42, 101 (1994)

    ADS  Google Scholar 

  11. K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001)

    ADS  Google Scholar 

  12. M. Diehl, Phys. Rept. 388, 41 (2003)

    ADS  Google Scholar 

  13. A.V. Belitsky, A.V. Radyushkin, Phys. Rept. 418, 1 (2005)

    ADS  Google Scholar 

  14. S. Boffi, B. Pasquini, Riv. Nuovo Cim. 30, 387 (2007)

    ADS  Google Scholar 

  15. X.D. Ji, Phys. Rev. Lett. 78, 610 (1997)

    ADS  Google Scholar 

  16. X. Ji, Ann. Rev. Nucl. Part. Sci. 54, 413 (2004)

    ADS  Google Scholar 

  17. X.D. Ji, Phys. Rev. D 55, 7114 (1997)

    ADS  Google Scholar 

  18. S.J. Brodsky, D. Chakrabarti, A. Harindranath, A. Mukherjee, J.P. Vary, Phys. Rev. D 75, 014003 (2007)

    ADS  Google Scholar 

  19. A.V. Radyushkin, Phys. Rev. D 56, 5524 (1997)

    ADS  Google Scholar 

  20. M. Burkardt, Phys. Rev. D 62, 071503 (2000). (Erratum: Phys. Rev. D 66, 119903 (2002))

    ADS  Google Scholar 

  21. M. Diehl, Eur. Phys. J. C 25, 223 (2002). (Erratum: Eur. Phys. J. C 31, 277 (2003))

    ADS  Google Scholar 

  22. D. Chakrabarti, A. Mukherjee, Phys. Rev. D 72, 034013 (2005)

    ADS  Google Scholar 

  23. P. Hagler, A. Mukherjee, A. Schafer, Phys. Lett. B 582, 55 (2004)

    ADS  Google Scholar 

  24. K. Kanazawa, C. Lorcé, A. Metz, B. Pasquini, M. Schlegel, Phys. Rev. D 90, 014028 (2014)

    ADS  Google Scholar 

  25. A. Rajan, A. Courtoy, M. Engelhardt, S. Liuti, Phys. Rev. D 94, 034041 (2016)

    ADS  Google Scholar 

  26. J.C. Collins, F. Hautmann, Phys. Lett. B 472, 129 (2000)

    ADS  Google Scholar 

  27. J.C. Collins, T.C. Rogers, A.M. Stasto, Phys. Rev. D 77, 085009 (2008)

    ADS  Google Scholar 

  28. F. Hautmann, Phys. Lett. B 655, 26 (2007)

    ADS  Google Scholar 

  29. J.C. Collins, Acta Phys. Polon. B 34, 3103 (2003)

    ADS  Google Scholar 

  30. R.N. Cahn, Phys. Lett. B 78, 269 (1978)

    ADS  Google Scholar 

  31. A. König, P. Kroll, Z. Phys. C 16, 89 (1982)

    ADS  Google Scholar 

  32. P. Chiappetta, M. Le Bellac, Z. Phys. C 32, 521 (1986)

    ADS  Google Scholar 

  33. A.V. Efremov, L. Mankiewicz, N.A. Tornqvist, Phys. Lett. B 284, 394 (1992)

    ADS  Google Scholar 

  34. J.C. Collins, Nucl. Phys. B 396, 161 (1993)

    ADS  Google Scholar 

  35. J.C. Collins, Phys. Lett. B 536, 43 (2002)

    ADS  Google Scholar 

  36. A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003)

    ADS  Google Scholar 

  37. I.O. Cherednikov, N.G. Stefanis, Phys. Rev. D 77, 094001 (2008)

    ADS  Google Scholar 

  38. M. Burkardt, Phys. Rev. D 66, 114005 (2002)

    ADS  Google Scholar 

  39. P.V. Pobylitsa, (2003). arXiv:hep-ph/0301236

  40. K. Goeke, A. Metz, M. Schlegel, Phys. Lett. B 618, 90 (2005)

    ADS  Google Scholar 

  41. S.J. Brodsky, F. Yuan, Phys. Rev. D 74, 094018 (2006)

    ADS  Google Scholar 

  42. H. Avakian, S.J. Brodsky, A. Deur, F. Yuan, Phys. Rev. Lett. 99, 082001 (2007)

    ADS  Google Scholar 

  43. G.A. Miller, Phys. Rev. C 76, 065209 (2007)

    ADS  Google Scholar 

  44. Ph. Hägler, B.U. Musch, J.W. Negele, A. Schäfer, Europhys. Lett. 88, 61001 (2009)

    ADS  Google Scholar 

  45. S.J. Brodsky, B. Pasquini, B.W. Xiao, F. Yuan, Phys. Lett. B 687, 327 (2010)

    ADS  Google Scholar 

  46. J.C. Collins, S.F. Heppelmann, G.A. Ladinsky, Nucl. Phys. B 420, 565 (1994)

    ADS  Google Scholar 

  47. D. Boer, R. Jakob, P.J. Mulders, Nucl. Phys. B 504, 345 (1997)

    ADS  Google Scholar 

  48. D. Boer, Phys. Rev. D 60, 014012 (1999)

    ADS  Google Scholar 

  49. A. Bacchetta, M. Boglione, A. Henneman, P.J. Mulders, Phys. Rev. Lett. 85, 712 (2000)

    ADS  Google Scholar 

  50. S. Arnold, A. Metz, M. Schlegel, Phys. Rev. D 79, 034005 (2009)

    ADS  Google Scholar 

  51. J.C. Collins, D.E. Soper, G.F. Sterman, Nucl. Phys. B 250, 199 (1985)

    ADS  Google Scholar 

  52. P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461, 197 (1996). (Erratum: Nucl. Phys. B 484, 538 (1997))

    ADS  Google Scholar 

  53. A. Kotzinian, Nucl. Phys. B 441, 234 (1995)

    ADS  Google Scholar 

  54. J.C. Collins, A. Metz, Phys. Rev. Lett. 93, 252001 (2004)

    ADS  Google Scholar 

  55. X.D. Ji, J.P. Ma, F. Yuan, Phys. Rev. D 71, 034005 (2005)

    ADS  Google Scholar 

  56. J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981). (Erratum: Nucl. Phys. B 213, 545 (1983))

    ADS  Google Scholar 

  57. U. D’Alesio, F. Murgia, Prog. Part. Nucl. Phys. 61, 394 (2008)

    ADS  Google Scholar 

  58. M. Burkardt, C.A. Miller, W.D. Nowak, Rept. Prog. Phys. 73, 016201 (2010)

    ADS  Google Scholar 

  59. V. Barone, F. Bradamante, A. Martin, Prog. Part. Nucl. Phys. 65, 267 (2010)

    ADS  Google Scholar 

  60. C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, Rev. Mod. Phys. 85, 655 (2013)

    ADS  Google Scholar 

  61. A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders, M. Schlegel, JHEP 0702, 093 (2007)

    ADS  Google Scholar 

  62. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002)

    ADS  Google Scholar 

  63. A.V. Radyushkin, Phys. Lett. B 380, 417 (1996)

    ADS  Google Scholar 

  64. T. Kasemets, S. Scopetta, Adv. Ser. Direct. High Energy Phys. 29, 49–62 (2018)

    ADS  Google Scholar 

  65. M. Diehl, D. Ostermeier, A. Schafer, JHEP 03, 089 (2012). (erratum: JHEP 03, 001 (2016))

    ADS  Google Scholar 

  66. M. Rinaldi, F.A. Ceccopieri, Phys. Rev. D 97(7), 071501 (2018)

    ADS  Google Scholar 

  67. S. Meissner, A. Metz, M. Schlegel, JHEP 08, 056 (2009)

    ADS  Google Scholar 

  68. C. Lorcé, B. Pasquini, JHEP 1309, 138 (2013)

    ADS  Google Scholar 

  69. S. Meissner, A. Metz, M. Schlegel, K. Goeke, JHEP 08, 038 (2008)

    ADS  Google Scholar 

  70. M.G. Echevarria, A. Idilbi, K. Kanazawa, C. Lorcé, A. Metz, B. Pasquini, M. Schlegel, Phys. Lett. B 759, 336 (2016)

    ADS  Google Scholar 

  71. E.P. Wigner, Phys. Rev. 40, 749 (1932)

    ADS  Google Scholar 

  72. X.-D. Ji, Phys. Rev. Lett. 91, 062001 (2003)

    ADS  Google Scholar 

  73. A.V. Belitsky, X.-D. Ji, F. Yuan, Phys. Rev. D 69, 074014 (2004)

    ADS  Google Scholar 

  74. C. Lorcé, B. Pasquini, Phys. Rev. D 84, 014015 (2011)

    ADS  Google Scholar 

  75. A.D. Martin, M.G. Ryskin, T. Teubner, Phys. Rev. D 62, 014022 (2000)

    ADS  Google Scholar 

  76. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 14, 525 (2000)

    ADS  Google Scholar 

  77. A.D. Martin, M.G. Ryskin, Phys. Rev. D 64, 094017 (2001)

    ADS  Google Scholar 

  78. C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105, 041 (2011)

    ADS  Google Scholar 

  79. Z.L. Ma, Z. Lu, Phys. Rev. D 98, 054024 (2018)

    ADS  Google Scholar 

  80. Y. Hagiwara, Y. Hatta, T. Ueda, Phys. Rev. D 94, 094036 (2016)

    ADS  Google Scholar 

  81. J. Zhou, Phys. Rev. D 94, 114017 (2016)

    ADS  Google Scholar 

  82. C. Lorce, B. Pasquini, X. Xiong, F. Yuan, Phys. Rev. D 85, 114006 (2012)

    ADS  Google Scholar 

  83. Y. Hatta, Phys. Lett. B 708, 186 (2012)

    ADS  Google Scholar 

  84. M.G. Echevarria, P.A. Gutierrez Garcia, I. Scimemi, Phys. Lett. B 840, 137881 (2023)

    Google Scholar 

  85. S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 77, 056007 (2008)

    ADS  Google Scholar 

  86. S.D. Drell, T.M. Yan, Phys. Rev. Lett. 24, 181 (1970)

    ADS  Google Scholar 

  87. G.B. West, Phys. Rev. Lett. 24, 1206 (1970)

    ADS  Google Scholar 

  88. T. Maji, D. Chakrabarti, Phys. Rev. D 94, 094020 (2016)

    ADS  Google Scholar 

  89. D. Chakrabarti, N. Kumar, T. Maji, A. Mukherjee, Eur. Phys. J. Plus 135, 496 (2020)

    Google Scholar 

  90. C. Mondal, D. Chakrabarti, Eur. Phys. J. C 75, 261 (2015)

    ADS  Google Scholar 

  91. T. Maji, D. Chakrabarti, Phys. Rev. D 95, 074009 (2017)

    ADS  Google Scholar 

  92. B. Gurjar, D. Chakrabarti, C. Mondal (2022). arXiv:2207.11527 [hep-ph]

  93. B. Gurjar, D. Chakrabarti, P. Choudhary, A. Mukherjee, P. Talukdar, Phys. Rev. D 104, 076028 (2021)

    ADS  Google Scholar 

  94. D. Chakrabarti, C. Mondal, A. Mukherjee, S. Nair, X. Zhao, Phys. Rev. D 102, 113011 (2020)

    ADS  Google Scholar 

  95. S. Sharma, N. Kumar, H. Dahiya, Nucl. Phys. B 992, 116247 (2023)

    Google Scholar 

  96. S. Sharma, H. Dahiya, Int. J. Mod. Phys. A 37, 2250205 (2022)

    ADS  Google Scholar 

  97. T. Maji, C. Mondal, D. Kang, Phys. Rev. D 105, 074024 (2022)

    ADS  Google Scholar 

  98. R. Kundu, A. Metz, Phys. Rev. D 65, 014009 (2002)

    ADS  Google Scholar 

  99. A. Mukherjee, R. Korrapati, Mod. Phys. Lett. A 26, 2653 (2011)

    ADS  Google Scholar 

  100. B. Pasquini, S. Rodini, Phys. Lett. B 788, 414 (2019)

    ADS  Google Scholar 

  101. R. Jakob, P.J. Mulders, J. Rodrigues, Nucl. Phys. A 626, 937 (1997)

    ADS  Google Scholar 

  102. H. Avakian, A. Efremov, P. Schweitzer, F. Yuan, Phys. Rev. D 81, 074035 (2010)

    ADS  Google Scholar 

  103. C. Lorcé, B. Pasquini, P. Schweitzer, JHEP 01, 103 (2015)

    ADS  Google Scholar 

  104. R.L. Jaffe, Xiangdong Ji, Phys. Rev. Lett. 67, 552 (1991)

    ADS  Google Scholar 

  105. A.I. Signal, Nucl. Phys. B 497, 415 (1997)

    ADS  Google Scholar 

  106. R.K. Ellis, W. Furmański, R. Petronzio, Nucl. Phys. B 207, 1 (1982)

    ADS  Google Scholar 

  107. R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 212, 29 (1983)

    ADS  Google Scholar 

  108. J. Qiu, G. Sterman, Nucl. Phys. B 353, 105 (1991)

    ADS  Google Scholar 

  109. J. Qiu, G. Sterman, Nucl. Phys. B 353, 137 (1991)

    ADS  Google Scholar 

  110. Y. Song, J. Gao, Z. Liang, X. Wang, Phys. Rev. D 83, 054010 (2011)

    ADS  Google Scholar 

  111. S. Wei, Y. Song, K. Chen, Z. Liang, Phys. Rev. D 95, 074017 (2017)

    ADS  Google Scholar 

  112. X. Liu, W. Mao, X. Wang, B. Ma (2021). arXiv:2110.14070 [hep-ph]

  113. A. Bacchetta, F. Conti, M. Radici, Phys. Rev. D 78, 074010 (2008)

    ADS  Google Scholar 

  114. J.R. Ellis, D.S. Hwang, A. Kotzinian, Phys. Rev. D 80, 074033 (2009)

    ADS  Google Scholar 

  115. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 89(5), 054033 (2014). (erratum: Phys. Rev. D 92, no.1, 019902 (2015))

    ADS  Google Scholar 

  116. A.V. Efremov, P. Schweitzer, O.V. Teryaev, P. Zavada, Phys. Rev. D 80, 014021 (2009)

    ADS  Google Scholar 

  117. M. Burkardt (2008). arXiv:0709.2966 [hep-ph]

  118. G.F. de Teramond, S.J. Brodsky (2012). arXiv:1203.4025 [hep-ph]

  119. D. Chakrabarti, C. Mondal, Eur. Phys. J. C 73, 2671 (2013)

    ADS  Google Scholar 

  120. D. Chakrabarti, C. Mondal, Phys. Rev. D 88(7), 073006 (2013)

    ADS  Google Scholar 

  121. A. Harindranath (1996). arXiv:hep-ph/9612244

  122. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rept. 301, 299 (1998)

    ADS  Google Scholar 

  123. C. Lorcé, B. Pasquini, Phys. Rev. D 93, 034040 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

H.D. would like to thank the Science and Engineering Research Board, Department of Science and Technology, Government of India through the grant (Ref No.TAR/2021/000157) under TARE scheme for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harleen Dahiya.

Additional information

Communicated by Eulogio Oset.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Dahiya, H. Twist-4 proton GTMDs in the light-front quark–diquark model. Eur. Phys. J. A 59, 235 (2023). https://doi.org/10.1140/epja/s10050-023-01156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01156-8

Navigation