Skip to main content
Log in

Thermal properties of \(^{97}\)Mo and \(^{90}\)Y nuclei using temperature dependent level density parameter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Nuclear level density and level density parameter are important quantities in nuclear physics. Level density parameter is calculated through different methods. In this work, at first, single particle level density has been calculated by Thomas Fermi approximation, then using single particle level density, the temperature dependent level density parameter has been obtained for the calculation of thermodynamic quantities such as excitation energy, entropy, level density and heat capacity. The energy, entropy, heat capacity and nuclear level density have also been calculated by BCS and MBCS models. Eventually, the results of thermodynamic quantities calculated by the level density parameter and thermodynamic quantities calculated by the BCS and MBCS models have been compared together and then compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All information necessary to reproduce the results described herein is contained in the material presented above].

References

  1. H.T. Nyhus et al., Phys. Rev. C 85, 014323 (2012)

    Article  ADS  Google Scholar 

  2. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  3. A.J. Koning, S. Hilaire, S. Goriely, Nucl. Phys. A 810, 13 (2008)

    Article  ADS  Google Scholar 

  4. P. Demetriou, S. Goriely, Nucl. Phys. A 695, 95 (2001)

    Article  ADS  Google Scholar 

  5. A.V. Ignatyuk et al., Sov. J. Nucl. Phys 21, 485 (1975)

    Google Scholar 

  6. T. Egidy, D. Bucurescu, Phys. Rev. C 72, 044311 (2005)

    Article  ADS  Google Scholar 

  7. J.P. Lestone, Phys. Rev. Lett. 70, 2245 (1993)

    Article  ADS  Google Scholar 

  8. Y. Alhassid, M. Bonett-Matiz, S. Liu, H. Nakada, Phys. Rev. C 92, 024307 (2015)

    Article  ADS  Google Scholar 

  9. S. Shlomo, J.B. Natowitz, Phys. Lett. B 252, 187 (1990)

    Article  ADS  Google Scholar 

  10. S. Shlomo, J.B. Natowitz, Phys. Rev. C 44, 2878 (1991)

    Article  ADS  Google Scholar 

  11. J.P. Lestone, Phys. Rev. C 52, 1118 (1995)

    Article  ADS  Google Scholar 

  12. J. Toke, W.J. Swiatecki, Nucl. Phys. A 372, 141 (1981)

    Article  ADS  Google Scholar 

  13. B. Canbula, R. Bulur, D. Canbula, H. Babacan, Nucl. Phys. A 929, 54 (2014)

    Article  ADS  Google Scholar 

  14. S. Hilaire, Phys. Lett. B 583, 264 (2004)

    Article  ADS  Google Scholar 

  15. V. Dehghani, S.A. Alavi, Eur. Phys. J. A 52, 306 (2016)

    Article  ADS  Google Scholar 

  16. M. Prakash, J. Wambach, Z.Y. Ma, Phys. Lett. B 128, 141 (1983)

    Article  ADS  Google Scholar 

  17. R. Rahmatinejad et al., Phys. Rev. C 101, 054315 (2020)

    Article  ADS  Google Scholar 

  18. B. Canbula, H. Babacan, Nucl. Phys. A 858, 32 (2011)

    Article  ADS  Google Scholar 

  19. J. Bardeen, L. N. cooper, J. R. Schrieffer, Phys. Rev 108, 1175 (1957)

  20. V. Dehghani, Gh. Forozani, Kh. Benam, Int. J. Mod. Phys. E 25, 1650098 (2016)

    Article  ADS  Google Scholar 

  21. Kh. Benam, V. Dehghani, Gh. Forozani, Int. J. Mod. Phys. E 27, 1850045 (2018)

    Article  ADS  Google Scholar 

  22. Kh. Benam, V. Dehghani, S.A. Alavi, Eur. Phys. J. A 55, 105 (2019)

    Article  ADS  Google Scholar 

  23. L.G. Moretto, Nucl. Phys. A 185, 145 (1972)

    Article  ADS  Google Scholar 

  24. A.N. Behkami, J.R. Huizenga, Nucl. Phys. A 217, 78 (1973)

    Article  ADS  Google Scholar 

  25. P. Arve, G. Bertsch, B. Lauritzen, G. Puddu, Ann. Phys. 183, 309 (1988)

    Article  ADS  Google Scholar 

  26. B. Lauritzen, A. Anselmino, P.F. Bortignon, R.A. Broglia, Ann. Phys. 223, 216 (1993)

    Article  ADS  Google Scholar 

  27. R. Rossignoli, N. Canosa, P. Ring, Phys. Rev. Lett 80, 1853 (1998)

    Article  ADS  Google Scholar 

  28. B. Mühlschlegel, D.J. Scalapino, R. Denton, Phys. Rev. B 6, 1767 (1972)

    Article  ADS  Google Scholar 

  29. P. Mohammadi, V. Dehghani, A.A. Mehmandoost-Khajeh-Dad, Phys. Rev. C 90, 054304 (2014)

    Article  ADS  Google Scholar 

  30. V. Dehghani, Gh. Forozani, Kh. Benam, Nucl. Sci. Technol. 28, 128 (2017)

    Article  Google Scholar 

  31. J. Damgaard, H.C. Pauli, V.V. Pashkevich, V.M. Strutinsky, Nucl. Phys. A 135, 432 (1969)

    Article  ADS  Google Scholar 

  32. S. Cwiok et al., Comput. Phys. Commun. 46, 379 (1987)

    Article  ADS  Google Scholar 

  33. Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991)

    Article  ADS  Google Scholar 

  34. H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013)

    Article  ADS  Google Scholar 

  35. M. Guttormsen et al., Phys. Rev. C 90, 044309 (2014)

    Article  ADS  Google Scholar 

  36. A. Schiller et al., Phys. Rev. C 63, 021306 (2001)

    Article  ADS  Google Scholar 

  37. M. Guttormsen et al., Phys. Rev. C 64, 034319 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Benam.

Additional information

Communicated by Takashi Nakatsukasa

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benam, K., Dehghani, V. & Alavi, S.A. Thermal properties of \(^{97}\)Mo and \(^{90}\)Y nuclei using temperature dependent level density parameter. Eur. Phys. J. A 59, 221 (2023). https://doi.org/10.1140/epja/s10050-023-01130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01130-4

Navigation