Skip to main content
Log in

Corrections to local-density approximation for superfluid trapped fermionic atoms from the Wigner-Kirkwood \(\hbar \) expansion

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A semiclassical second-order differential equation for the inhomogeneous local gap \(\Delta (\varvec{r})\) is derived from a strict second-order \(\hbar \) expansion of the anomalous pairing tensor and compared with a similar equation given in Simonucci and Strinati (in Phys Rev B 89:054511, 2014). The second-order normal density matrix is given as well. Several extra gradient terms are revealed. Second-order expressions at finite temperature are given for the first time. The corresponding Ginzburg–Landau equation is presented and it is shown that, compared to the equation of Baranov and Petrov (in Phys Rev A 58:R801, 1998), an extra second-order gradient term is present. Applications to the pairing gap in cold atoms in a harmonic trap are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article is a purely theoretical work and has no associated data.]

References

  1. S. Simonucci, G.C. Strinati, Phys. Rev. B 89, 054511 (2014)

    Article  ADS  Google Scholar 

  2. M.A. Baranov, D.S. Petrov, Phys. Rev. A 58, R801 (1998)

    Article  ADS  Google Scholar 

  3. P. Ring, P. Schuck, The Nuclear Many-Body Problem. Springer 1980

  4. P.G. De Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966). (chapter 5)

    MATH  Google Scholar 

  5. M. Grasso, M. Urban, Phys. Rev. A 68, 033610 (2003)

    Article  ADS  Google Scholar 

  6. K. Taruishi and P. Schuck, Z. Phys. A 342, 3397 (1992)

  7. C.A. Ullrich, E.K.U. Gross, Aust. J. Phys. 49, 103 (1996)

    Article  ADS  Google Scholar 

  8. A. Csordas, O. Almásy, P. Szépfalusy, Phys. Rev. A 82, 063609 (2010)

    Article  ADS  Google Scholar 

  9. J.C. Pei, Na Fei, Y.N. Zhang and P. Schuck, Phys. Rev. C 92, 064316 (2015)

  10. S. Simonucci, P. Pieri, G.C. Strinati, Nat. Phys. 11, 941 (2015)

    Article  Google Scholar 

  11. C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)

    Article  ADS  Google Scholar 

  12. A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  13. S. Chiacchiera, T. Lepers, M. Urban, D. Davesne, Phys. Rev. A 79, 033613 (2009)

    Article  ADS  Google Scholar 

  14. M. Urban, and P. Schuck, Phys. Rev. A 73, 013621 (2006); erratum ibid.75, 049903 (2007)

  15. M. Urban, P. Schuck, Phys. Rev. A 78, 011601(R) (2008)

    Article  ADS  Google Scholar 

  16. M. Marini, F. Pistolesi, G.C. Strinati, Eur. Phys. J. B 1, 151 (1998)

    Article  ADS  Google Scholar 

  17. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972). (chapter 17)

    MATH  Google Scholar 

  18. I.S. Gradshteyn and I.M. Ryzhik, Tables of Integral, Series and Products (Academic Press, New York, 1965) section 8.1

Download references

Acknowledgements

We are very greatful to G. C. Strinati who introduced us to many details of the derivation of the formulas in [1]. One of us, X.V., was partially supported by Grants No. FIS2017-87534-P from MINECO and No. CEX2019-000918-M from AEI-MICINN through the “Unit of Excellence María de Maeztu 2020-2023” award to ICCUB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Urban or Xavier Viñas.

Additional information

Communicated by David Blaschke.

Appendices

A Explicit expressions for the \(Y^\kappa _i\) and \(Y^\rho _i\) coefficients at \(T=0\)

As we have mentioned in the main text, the \(\varvec{p}\) integrals of the pair and normal density matrices (6) and (9) can be performed analytically at zero temperature. However, it will turn out that there are certain terms which are divergent in the limit \(\Delta \rightarrow 0\). We report here the corresponding values \(Y^\kappa _i\) as they are obtained from Pei (including all divergent terms) [9].

The functions \(Y^\kappa _i\) and \(Y^\rho _i\) can be expressed in terms of two functions \(I_5(x_0)\) and \(I_6(x_0)\), where \(x_0=\mu (\varvec{r})/\Delta (\varvec{r})\), which in turn can be written in terms of two complete elliptic integrals as follows [1, 16]:

$$\begin{aligned} I_5(x_0)= & {} (1 + x_0^2)^{1/4} E\big (\tfrac{\pi }{2},\kappa \big ) -\frac{F\big (\tfrac{\pi }{2},\kappa \big )}{4 x_1^2(1+x_0^2)^{1/4}}, \end{aligned}$$
(32)
$$\begin{aligned} I_6(x_0)= & {} \frac{1}{2(1+x_0^2)^{1/4}} F\big (\tfrac{\pi }{2},\kappa \big ), \end{aligned}$$
(33)

where \(x_1^2 = (\sqrt{1 + x_0^2} + x_0)/2\) and \(\kappa ^2=x_1^2/\sqrt{1+x_0^2}\), while \(F(\pi /2,\kappa )\) and \(E(\pi /2,\kappa )\) are the complete elliptic integrals of first and second kind defined by [17, 18]

$$\begin{aligned} F(\alpha ,\kappa )= & {} \int _0^{\alpha } d\phi \frac{1}{\sqrt{1 - \kappa ^2 \sin ^2 \phi }}, \end{aligned}$$
(34)
$$\begin{aligned} E(\alpha ,\kappa )= & {} \int _0^{\alpha } d\phi \sqrt{1 - \kappa ^2 \sin ^2 \phi }, \end{aligned}$$
(35)

with \(\kappa ^2 < 1\). The main properties of these elliptic integrals are given in appendix A of [16].

If we write for brevity \(I_5\) and \(I_6\) for \(I_5(x_0)\) and \(I_6(x_0)\), respectively, the analytical expressions for the \(Y^\kappa _i\) functions read

$$\begin{aligned} Y^\kappa _1(\varvec{r})= & {} \frac{1}{144\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }}\nonumber \\{} & {} \times \frac{(10x_0^2+7)I_6+(4x_0^2+1)x_0I_5}{1+x_0^2}, \end{aligned}$$
(36)
$$\begin{aligned} Y^\kappa _2(\varvec{r})= & {} -\frac{1}{576\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\Delta \sqrt{\Delta }}\nonumber \\{} & {} \times \frac{(4x_0^4+23x_0^2+7)I_6+(16x_0^4+38x_0^2+10)x_0I_5}{(1+x_0^2)^2},\quad \end{aligned}$$
(37)
$$\begin{aligned} Y^\kappa _3(\varvec{r})= & {} -\frac{1}{48\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }}\frac{I_5-x_0I_6}{1+x_0^2}, \end{aligned}$$
(38)
$$\begin{aligned} Y^\kappa _4(\varvec{r})= & {} \frac{1}{192\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\Delta \sqrt{\Delta }}\frac{(3x_0^2-1)I_6-4x_0I_5}{(1+x_0^2)^2}, \end{aligned}$$
(39)
$$\begin{aligned} Y^\kappa _5(\varvec{r})= & {} - \frac{1}{24\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \sqrt{\Delta }I_6, \end{aligned}$$
(40)
$$\begin{aligned} Y^\kappa _6(\varvec{r})= & {} \frac{7}{192\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \sqrt{\Delta }I_6, \end{aligned}$$
(41)
$$\begin{aligned} Y^\kappa _7(\varvec{r})= & {} - \frac{1}{96\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\Delta \sqrt{\Delta }}\nonumber \\{} & {} \times \frac{(4x_0^4+11x_0^2+3)I_5-(2x_0^2-2)x_0I_6}{(1+x_0^2)^2}, \end{aligned}$$
(42)
$$\begin{aligned} Y^\kappa _8(\varvec{r})= & {} \frac{1}{96\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }}\frac{I_5-x_0I_6}{1+x_0^2}, \end{aligned}$$
(43)
$$\begin{aligned} Y^\kappa _9(\varvec{r})= & {} - \frac{1}{96\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }} \nonumber \\{} & {} \times \frac{(10x_0^2+7)I_6-(4x_0^2+1)x_0I_5}{1+x_0^2}, \end{aligned}$$
(44)

In our study of the pairing in finite systems it is actually relevant to know the \(\Delta \rightarrow 0\) limit because the gap goes to zero at the surface. In this case the auxiliary functions \(I_5(x_0)\) and \(I_6(x_0)\) behave as \(I_5(x_0) \simeq \sqrt{x_0} \simeq 1/\sqrt{\Delta }\) and \(I_6(x_0)\simeq \ln (8x_0)/(2 \sqrt{x_0}) \simeq \sqrt{\Delta }\ln \Delta \), respectively [16]. This implies that, as already mentioned, in the limit \(\Delta \rightarrow 0\) some of the \(Y^\kappa _i\) functions defined previously are divergent. For example, in the function \(Y^\kappa _1\) (36) the leading term in this limit behaves as \(\nabla ^2 \Delta /\Delta ^2\) and therefore diverges.

It is easy to show that the \(\hbar ^0\) (Thomas-Fermi) contribution to the normal density in the presence of the pairing field is given by [1, 16]

$$\begin{aligned} \rho _0(\varvec{r}){} & {} = \int \!\! \frac{d^3p}{(2\pi \hbar )^3} \frac{1}{2}\bigg [ 1 - \frac{h(\varvec{r},\varvec{p})}{E(\varvec{r},\varvec{p})}\bigg ] \nonumber \\{} & {} = \frac{1}{6\pi ^2} \bigg (\frac{2m^*\Delta }{\hbar ^2}\bigg )^{3/2}[I_6 + x_0 I_5]. \end{aligned}$$
(45)

The contributions to the \(\hbar ^2\) corrections of the normal density \(\rho _2\) as given in Pei [9] read

$$\begin{aligned} Y^\rho _1(\varvec{r})= & {} \frac{1}{48\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }}\frac{(x_0^2+3)I_5-3x_0I_6}{1+x_0^2}, \end{aligned}$$
(46)
$$\begin{aligned} Y^\rho _2(\varvec{r})= & {} - \frac{1}{192\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big ) ^{1/2}\frac{1}{\Delta \sqrt{\Delta }}\nonumber \\{} & {} \times \frac{(4x_0^4+5x_0^2+5)I_5+(2x_0^2-2)x_0I_6}{(1+x_0^2)^2}, \end{aligned}$$
(47)
$$\begin{aligned} Y^\rho _3(\varvec{r})= & {} - \frac{1}{48\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }}\frac{I_6+x_0I_5}{1+x_0^2}, \end{aligned}$$
(48)
$$\begin{aligned} Y^\rho _4(\varvec{r})= & {} - \frac{1}{192\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\Delta \sqrt{\Delta }}\nonumber \\{} & {} \times \frac{(x_0^2-3)I_5+4x_0I_6}{(1+x_0^2)^2}, \end{aligned}$$
(49)
$$\begin{aligned} Y^\rho _5(\varvec{r})= & {} - \frac{1}{24\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \sqrt{\Delta }I_5, \end{aligned}$$
(50)
$$\begin{aligned} Y^\rho _6(\varvec{r})= & {} \frac{7}{192\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \sqrt{\Delta }I_5, \end{aligned}$$
(51)
$$\begin{aligned} Y^\rho _7(\varvec{r})= & {} - \frac{1}{96\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\Delta \sqrt{\Delta }}\nonumber \\{} & {} \times \frac{(3x_0^2-1)I_6-4x_0I_5}{(1+x_0^2)^2}, \end{aligned}$$
(52)
$$\begin{aligned} Y^\rho _8(\varvec{r})= & {} \frac{1}{96\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }}\frac{I_6+x_0I_5}{1+x_0^2}, \end{aligned}$$
(53)
$$\begin{aligned} Y^\rho _9(\varvec{r})= & {} - \frac{1}{96\pi ^2}\Big (\frac{2m^*}{\hbar ^2}\Big )^{1/2} \frac{1}{\sqrt{\Delta }}\frac{I_5-3x_0I_6}{1+x_0^2}. \end{aligned}$$
(54)

In the \(\Delta \rightarrow 0\) limit, only the \(Y^\rho _3\), \(Y^\rho _4\), \(Y^\rho _5\), \(Y^\rho _6\), and \(Y^\rho _8\) terms in \(\rho _2(\varvec{r})\) survive, because the others are multiplied by gradients of \(\Delta \). If we furthermore consider \(m^* = m\), only \(Y^\rho _3\) and \(Y^\rho _4\) are relevant. Taking into account the asymptotic behaviour of \(I_5(x_0)\) and \(I_6(x_0)\) in the limit \(\Delta \rightarrow 0\), the normal density in this case agrees with the well-known normal density given by Eq. (13.44) of Ref. [3].

B \(2\times 2\) generalized density matrix from Ref. [6]

The finite temperature expressions of section 2 can be straightforwardly derived from Eqs. (5.5) and (5.7) of [6]. The zeroth order of the \(2\times 2\) generalized density matrix is given by

$$\begin{aligned} {\mathcal {R}}_0 = \frac{1}{2}\bigg [ {\textsf{I}}+ \frac{{\mathcal {H}}}{E}(1-2f(E)) \bigg ]. \end{aligned}$$
(55)

Proceeding with the expression (5.7) in [6] in the same way, we obtain

$$\begin{aligned} {\mathcal {R}}_2(E)= & {} \bigg [ g_1\frac{{\mathcal {H}}}{E} - g_2\frac{{\mathcal {F}}}{E}\bigg ](1-2f(E))\nonumber \\{} & {} +\bigg [ g_7\frac{{\mathcal {H}}}{E} + g_8\frac{{\mathcal {F}}}{E}\bigg ] 2\frac{\partial ^2f(E)}{\partial E^2} + g_{10}\frac{{\mathcal {H}}}{E} 2\frac{\partial ^3 f(E)}{\partial E^3},\nonumber \\ \end{aligned}$$
(56)

where

$$\begin{aligned} {\mathcal {H}}= \begin{pmatrix} h&{}\Delta \\ \Delta &{}-h\end{pmatrix} ,\qquad {\mathcal {F}}= \begin{pmatrix} -\Delta &{}h \\ h&{}\Delta \end{pmatrix}. \end{aligned}$$
(57)

Finally, this leads to Eqs. (6) and (9) of the main text with the \(g_i\) expressed in terms of the \(f_i\) given in [6]. Please notice that in [6] there is a sign misprint and \(g_2\) should be replaced by \(-g_2\) there.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuck, P., Urban, M. & Viñas, X. Corrections to local-density approximation for superfluid trapped fermionic atoms from the Wigner-Kirkwood \(\hbar \) expansion. Eur. Phys. J. A 59, 164 (2023). https://doi.org/10.1140/epja/s10050-023-01077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01077-6

Navigation