Skip to main content
Log in

Study of charm and beauty mass spectra, semileptonic decays of \(B_{(s,c)}\) and \({B_c} \rightarrow J/\psi ({\eta _c}) + P(V)\) in a phenomenological potential model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Using a non-relativistic potential model, we obtain the mass spectra, leptonic decay constants, and parameters of the Isgur-Wise function for the beauty and charm mesons. With the calculated quantities, we investigate purely leptonic decays of \(B^+\), \(B^{*}\), \(B_c^+\), semileptonic decay modes \({B_{(s)}} \rightarrow {D_{(s)}}l\nu \) and \({B_c} \rightarrow {\eta _c}\ell \bar{\nu }\) for three lepton channels \(e,\mu ,\tau \), and obtain the corresponding branching fractions. \(\bar{B}_{(s)}^{} \rightarrow D_{(s)}^*l\bar{\nu }\) transitions are also studied. Next, we apply the form factors for spin zero and spin one transitions of \(B_c\) to calculate the nonleptonic branching ratios of \({B_c} \rightarrow J/\psi ({\eta _c}) + P(V)\), where P and V stand for the \(D_q^{* - }\) vector meson and the \(D_q\) pseudoscalar meson, respectively. Our results are found to be in agreement with those obtained in the experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We have referred to the papers that we used their data in our work.]

References

  1. M. Neubert, B. Stech, Adv. Ser. Direct. High Energy Phys. 15, 294–344 (1998). arXiv:hep-ph/9705292 [hep-ph]

    ADS  Google Scholar 

  2. Z. Ligeti, Y. Nir, M. Neubert, Phys. Rev. D 49, 1302–1309 (1994). arXiv:hep-ph/9305304 [hep-ph]

    ADS  Google Scholar 

  3. H.M. Choi, C.R. Ji, Phys. Rev. D 80, 114003 (2009). arXiv:0909.5028 [hep-ph]

    ADS  Google Scholar 

  4. X.J. Chen, H.F. Fu, C.S. Kim, G.L. Wang, J. Phys. G 39, 045002 (2012). arXiv:1106.3003 [hep-ph]

    ADS  Google Scholar 

  5. H. Na et al. [HPQCD], Phys. Rev. D 92(5), 054510 (2015) [erratum: Phys. Rev. D 93, no.11, 119906 (2016)] arXiv:1505.03925 [hep-lat]

  6. S. Dubnicka, A. Z. Dubnickova, A. Issadykov, M. A. Ivanov, A. Liptaj, Phys. Rev. D 96(7), 076017 (2017) arXiv:1708.09607 [hep-ph]

  7. T. Zhou, T. Wang, Y. Jiang, L. Huo, G. L. Wang, J. Phys. G 48, 5, 055006 (2021) arXiv:2006.05704 [hep-ph]

  8. G. Aad et al. [ATLAS], Eur. Phys. J. C 76(1), 4 (2016) arXiv:1507.07099 [hep-ex]

  9. S.S. Gershtein, M.Y. Khlopov, Pisma. Zh. Eksp. Teor. Fiz. 23, 374–377 (1976)

    Google Scholar 

  10. M.Z. Yang, Eur. Phys. J. C 72, 1880 (2012). [arXiv:1104.3819 [hep-ph]]

    ADS  Google Scholar 

  11. H. Mutuk, Adv. High Energy Phys. 2018, 8095653 (2018). [arXiv:1807.08511 [hep-ph]]

    Google Scholar 

  12. L.X. Gutierrez-Guerrero, J. Alfaro, A. Raya, Int. J. Mod. Phys. A 36(24), 2150171 (2021). arXiv:2108.12532 [hep-ph]

    ADS  Google Scholar 

  13. Y. Yang, Z. Li, K. Li, J. Huang, J. Sun, Eur. Phys. J. C 81(12), 1110 (2021). arXiv:2109.05650 [hep-ph]

    ADS  Google Scholar 

  14. R. Kumar, F. Chand, Commun. Theor. Phys. 59, 528–532 (2013)

    Google Scholar 

  15. H. Hassanabadi, S. Rahmani, S. Zarrinkamar, Phys. Rev. D 89(11), 114027 (2014)

    ADS  Google Scholar 

  16. C.Q. Pang, J.Z. Wang, X. Liu, T. Matsuki, Eur. Phys. J. C 77(12), 861 (2017). arXiv:1705.03144 [hep-ph]

    ADS  Google Scholar 

  17. C.W. Xiao, S. Rahmani, H. Hassanabadi, Eur. Phys. J. Plus 136(10), 1083 (2021). arXiv:2007.03161 [hep-ph]

    Google Scholar 

  18. S. Rahmani, C.W. Xiao, Eur. Phys. J. Plus 138(1), 38 (2023). arXiv:2209.02058 [hep-ph]

    Google Scholar 

  19. W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817–2860 (2008). arXiv:0711.2492 [nucl-th]

    ADS  Google Scholar 

  20. K.B. Bhaghyesh, A.P. Vijaya Kumar, J. Monteiro, Phys. G 38, 085001 (2011)

    ADS  Google Scholar 

  21. K.B. Vijaya Kumar, B. Hanumaiah, S. Pepin, Eur. Phys. J. A 19, 247–250 (2004)

    ADS  Google Scholar 

  22. C.Q. Pang, Phys. Rev. D 99(7), 074015 (2019). arXiv:1902.02206 [hep-ph]

    ADS  Google Scholar 

  23. V. Lengyel, Y. Fekete, I. Haysak, A. Shpenik, Eur. Phys. J. C 21, 355–359 (2001). arXiv:hep-ph/0007084 [hep-ph]

    ADS  Google Scholar 

  24. S.F. Radford, W.W. Repko, M.J. Saelim, Phys. Rev. D 80, 034012 (2009). https://doi.org/10.1103/PhysRevD.80.034012. arXiv:0903.0551 [hep-ph]

    Article  ADS  Google Scholar 

  25. R.L. Workman et al., Particle Data Group. Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

    Google Scholar 

  26. G.L. Wang, T. Wang, Q. Li, C.H. Chang, JHEP 05, 006 (2022). [arXiv:2201.02318 [hep-ph]]

    ADS  Google Scholar 

  27. Z.K. Geng, T. Wang, Y. Jiang, G. Li, X.Z. Tan, G.L. Wang, Phys. Rev. D 99(1), 013006 (2019). arXiv:1809.02968 [hep-ph]

    ADS  Google Scholar 

  28. W. Li, Y.L. Wang, T.F. Feng, G.L. Wang, Eur. Phys. J. C 80(8), 721 (2020). arXiv:2005.11636 [hep-ph]

    ADS  Google Scholar 

  29. S. Bhatnagar, L. Alemu, Phys. Rev. D 97(3), 034021 (2018). arXiv:1610.03234 [hep-ph]

    ADS  Google Scholar 

  30. E. Gebrehana, S. Bhatnagar, H. Negash, Phys. Rev. D 100(5), 054034 (2019). arXiv:1901.01888 [hep-ph]

    ADS  Google Scholar 

  31. E. Braaten, S. Fleming, Phys. Rev. D 52, 181–185 (1995). arXiv:hep-ph/9501296 [hep-ph]

    ADS  Google Scholar 

  32. K. Ikado et al., [Belle], Phys. Rev. Lett. 97, 251802 (2006) arXiv:hep-ex/0604018 [hep-ex]

  33. H.K. Sun, M.Z. Yang, Phys. Rev. D 99(9), 093002 (2019). arXiv:1903.04295 [hep-ph]

    ADS  Google Scholar 

  34. K.K. Pathak, D.K. Choudhury, Chin. Phys. Lett. 28, 101201 (2011). arXiv:1108.5315 [hep-ph]

    ADS  Google Scholar 

  35. E.J. Eichten, C. Quigg, Phys. Rev. D 99(5), 054025 (2019). arXiv:1902.09735 [hep-ph]

    ADS  Google Scholar 

  36. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003). arXiv:hep-ph/0210381 [hep-ph]

    ADS  Google Scholar 

  37. B. Colquhoun et al., [HPQCD], Phys. Rev. D 91(11), 114509 (2015) arXiv:1503.05762 [hep-lat]

  38. G.L. Wang, Phys. Lett. B 633, 492–496 (2006). arXiv:math-ph/0512009 [math-ph]

    ADS  Google Scholar 

  39. C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Phys. Rev. D 71, 113006 (2005). arXiv:hep-ph/0502219 [hep-ph]

    ADS  Google Scholar 

  40. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Lett. B 635, 93–99 (2006). arXiv:hep-ph/0602110 [hep-ph]

    ADS  Google Scholar 

  41. Q. Chang, X.N. Li, X.Q. Li, F. Su, Chin. Phys. C 42(7), 073102 (2018). arXiv:1805.00718 [hep-ph]

    ADS  Google Scholar 

  42. H. Hassanabadi, S. Rahmani, S. Zarrinkamar, Eur. Phys. J. C 74(10), 3104 (2014). arXiv:1407.3901 [hep-ph]

    Google Scholar 

  43. S. Rahmani, H. Hassanabadi, Eur. Phys. J. A 53(9), 187 (2017)

    ADS  Google Scholar 

  44. M. Atoui, V. Morénas, D. Bečirevic, F. Sanfilippo, Eur. Phys. J. C 74(5), 2861 (2014). arXiv:1310.5238 [hep-lat]

    ADS  Google Scholar 

  45. S. Faller, A. Khodjamirian, C. Klein, T. Mannel, Eur. Phys. J. C 60, 603–615 (2009). arXiv:0809.0222 [hep-ph]

    ADS  Google Scholar 

  46. R. Aaij et al., [LHCb], JHEP 12, 144 (2020). arXiv:2003.08453 [hep-ex]

  47. Y.M. Wang, Y.B. Wei, Y.L. Shen, C.D. Lü, JHEP 06, 062 (2017). arXiv:1701.06810 [hep-ph]

    ADS  Google Scholar 

  48. N. Isgur, M.B. Wise, Phys. Lett. B 237, 527–530 (1990)

    ADS  Google Scholar 

  49. Z.J. Xiao, Y.Y. Fan, W.F. Wang, S. Cheng, Chin. Sci. Bull. 59, 3787–3800 (2014). arXiv:1401.0571 [hep-ph]

    Google Scholar 

  50. H.M. Choi, Phys. Rev. D 103(7), 073004 (2021). arXiv:2102.02015 [hep-ph]

  51. R.N. Faustov, V.O. Galkin, X.W. Kang, Phys. Rev. D 106(1), 013004 (2022). arXiv:2206.10277 [hep-ph]

    ADS  Google Scholar 

  52. Z.K. Geng, Y. Jiang, T. Wang, H.W. Zheng, G.L. Wang, Chin. Phys. C 45(1), 013104 (2021)

    ADS  Google Scholar 

  53. T. Zhou, T. Wang, Y. Jiang, X.Z. Tan, G. Li, G.L. Wang, Int. J. Mod. Phys. A 35(17), 2050076 (2020). arXiv:1910.06595 [hep-ph]

    ADS  Google Scholar 

  54. K.C. Bowler et al., [UKQCD], Phys. Rev. D 52, 5067–5094 (1995). arXiv:hep-ph/9504231 [hep-ph]

  55. R. Glattauer et al. [Belle], Phys. Rev. D 93(3), 032006 (2016) arXiv:1510.03657 [hep-ex]

  56. A. Issadykov, M.A. Ivanov, G. Nurbakova, EPJ Web Conf. 158, 03002 (2017). arXiv:1907.13210 [hep-ph]

    Google Scholar 

  57. N. E. Adam et al., [CLEO], Phys. Rev. D 67, 032001 (2003) arXiv:hep-ex/0210040 [hep-ex]

  58. P. Colangelo, F. De Fazio, Phys. Rev. D 61, 034012 (2000). arXiv:hep-ph/9909423 [hep-ph]

    ADS  Google Scholar 

  59. E. Hernandez, J. Nieves, J.M. Verde-Velasco, Phys. Rev. D 74, 074008 (2006). arXiv:hep-ph/0607150 [hep-ph]

    ADS  Google Scholar 

  60. W.F. Wang, Y.Y. Fan, Z.J. Xiao, Chin. Phys. C 37, 093102 (2013). arXiv:1212.5903 [hep-ph]

    ADS  Google Scholar 

  61. J.P. Lees et al., BaBar. Phys. Rev. Lett. 109, 101802 (2012). arXiv:1205.5442 [hep-ex]

    ADS  Google Scholar 

  62. D. Bigi, P. Gambino, Phys. Rev. D 94(9), 094008 (2016). arXiv:1606.08030 [hep-ph]

    ADS  Google Scholar 

  63. Y. Amhis et al. [HFLAV], Eur. Phys. J. C 77(12), 895 (2017) arXiv:1612.07233 [hep-ex]

  64. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 68, 094020 (2003). (rXiv:hep-ph/0306306 [hep-ph])

    ADS  Google Scholar 

  65. D. Ebert, R. N. Faustov, V. O. Galkin, Eur. Phys. J. C 32, 29–43 (2003) arXiv:hep-ph/0308149 [hep-ph]

  66. H.K. Quang, X.Y. Pham, Elementary Particles and Their Interaction (Springer, New York, 1998)

    MATH  Google Scholar 

  67. S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 05, 137 (2013). arXiv:1303.5794 [hep-ph]

    ADS  Google Scholar 

  68. M.A. Ivanov, J.G. Korner, P. Santorelli, Phys. Rev. D 73, 054024 (2006). arXiv:hep-ph/0602050 [hep-ph]

    ADS  Google Scholar 

  69. S. Naimuddin, S. Kar, M. Priyadarsini, N. Barik, P.C. Dash, Phys. Rev. D 86, 094028 (2012)

    ADS  Google Scholar 

  70. I.P. Gouz, V.V. Kiselev, A.K. Likhoded, V.I. Romanovsky, O.P. Yushchenko, Phys. Atom. Nucl. 67, 1559–1570 (2004). arXiv:hep-ph/0211432 [hep-ph]

    ADS  Google Scholar 

  71. A.Y. Anisimov, I.M. Narodetsky, C. Semay, B. Silvestre-Brac, Phys. Lett. B 452, 129–136 (1999). arXiv:hep-ph/9812514 [hep-ph]

    ADS  Google Scholar 

  72. V.V. Kiselev, O.N. Pakhomova, V.A. Saleev, J. Phys. G 28, 595–606 (2002). arXiv:hep-ph/0110180 [hep-ph]

    ADS  Google Scholar 

  73. C.H. Chang, Y.Q. Chen, Phys. Rev. D 49, 3399–3411 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Changsha under Grant No. kq2208257 and the Natural Science Foundation of Hunan province under Grant No. 2023JJ30647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rahmani.

Additional information

Communicated by Ralf Rapp.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, S., Luo, W.C. & Xiao, C.W. Study of charm and beauty mass spectra, semileptonic decays of \(B_{(s,c)}\) and \({B_c} \rightarrow J/\psi ({\eta _c}) + P(V)\) in a phenomenological potential model. Eur. Phys. J. A 59, 155 (2023). https://doi.org/10.1140/epja/s10050-023-01074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01074-9

Navigation