Skip to main content
Log in

Study of strange quark density fluctuations in Au + Au Collisions at \(\sqrt{\textrm{s}_{_{\textrm{NN}}}}\) = 7.7–200 GeV from AMPT Model

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The strangeness production is an important observable to study the QCD phase diagram. The yield ratios of strange quark can be helpful to search for the QCD critical end point (CEP) and/or first-order phase transition. In this work, we studied the production of \(K^{\pm }\), \(\Xi ^-({\bar{\Xi }}^{+})\), \(\phi \) and \(\Lambda ({\bar{\Lambda }})\) in Au + Au collisions at \(\sqrt{\textrm{s}_{_{\textrm{NN}}}}\) = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV from A Multi-Phase Transport model with string melting version (AMPT-SM). We calculated the invariant yield of these strange hadrons using a different set of parameters compared to those reported in earlier studies and also by varying the hadronic cascade time (\(t_{max}\)) in the AMPT-SM model. We also calculated the yield ratios, \({\mathcal {O}}_{K^{\pm }-\Xi ^{-}({\bar{\Xi }}^{+})-\phi -\Lambda (\bar{\Lambda })}\) which are reported as sensitive to the strange quark density fluctuations and found that the AMPT-SM model fails to describe the non-monotonic trend observed by the experimental data. The negative particle ratio are found to be higher than the ratio of positive particles which is consistent with the experimental data. A significant effect is also seen on these ratios by varying the \(t_{max}\). For a crossover transition between the Quark-Gluon Plasma (QGP) and hadronic matter, the double yield ratios considered in the present study based on AMPT-SM model do not show any non-monotonic behaviors and thus providing a baseline for the search of CEP, because there is no first-order or second-order phase transition in the AMPT model. The more realistic equation of state based dynamical modeling is still required for the heavy-ion collisions in order to extract the definite physics conclusion about the non-monotonic energy dependence behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The authors declare that all the supported data of this study are available within the article.]

References

  1. I. Arsene et al., BRAHMS. Nucl. Phys. A 757, 1–27 (2005)

    Article  ADS  Google Scholar 

  2. K. Adcox et al., PHENIX. Nucl. Phys. A 757, 184–283 (2005)

    Article  ADS  Google Scholar 

  3. B.B. Back et al., PHOBOS. Nucl. Phys. A 757, 28–101 (2005)

    Article  ADS  Google Scholar 

  4. J. Adams et al., STAR. Nucl. Phys. A 757, 102–183 (2005)

    Article  ADS  Google Scholar 

  5. J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999)

    Article  ADS  Google Scholar 

  6. F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)

    Article  ADS  Google Scholar 

  7. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167–199 (2006)

    Article  ADS  Google Scholar 

  8. E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Braun-Munzinger, V. Koch, T. Schäfer, J. Stachel, Phys. Rept. 621, 76–126 (2016)

    Article  ADS  Google Scholar 

  10. Z. Fodor, S.D. Katz, JHEP 04, 050 (2004)

    Article  ADS  Google Scholar 

  11. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668–684 (1989)

    Article  Google Scholar 

  12. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. Lett. 81, 4816–4819 (1998)

    Article  ADS  Google Scholar 

  13. Y. Hatta, T. Ikeda, Phys. Rev. D 67, 014028 (2003)

    Article  ADS  Google Scholar 

  14. R.V. Gavai, S. Gupta, Phys. Rev. D 78, 114503 (2008)

    Article  ADS  Google Scholar 

  15. M. Asakawa, S.A. Bass, B. Muller, C. Nonaka, Phys. Rev. Lett. 101, 122302 (2008)

    Article  ADS  Google Scholar 

  16. M. Asakawa, U.W. Heinz, B. Muller, Phys. Rev. Lett. 85, 2072–2075 (2000)

    Article  ADS  Google Scholar 

  17. N. Yu, D. Zhang, X. Luo, Chin. Phys. C 44(1), 014002 (2020)

    Article  ADS  Google Scholar 

  18. K.J. Sun, L.W. Chen, C.M. Ko, Z. Xu, Phys. Lett. B 774, 103–107 (2017)

    Article  ADS  Google Scholar 

  19. K.J. Sun, L.W. Chen, C.M. Ko, J. Pu, Z. Xu, Phys. Lett. B 781, 499–504 (2018)

    Article  ADS  Google Scholar 

  20. T. Shao, J. Chen, C.M. Ko, K.J. Sun, Phys. Lett. B 801, 135177 (2020)

    Article  Google Scholar 

  21. B.I. Abelev et al., STAR. Phys. Rev. C 81, 024911 (2010)

    Article  ADS  Google Scholar 

  22. M. M. Aggarwal et al. [STAR], arXiv:1007.2613 [nucl-ex]

  23. J. Adam et al., STAR. Phys. Rev. C 102(3), 034909 (2020)

    Article  ADS  Google Scholar 

  24. M.U. Ashraf, J. Phys. Conf. Ser. 668(1), 012095 (2016)

    Article  Google Scholar 

  25. M. U. Ashraf [STAR], Nucl. Phys. A 1005, 121815 (2021)

  26. J. Adam et al., STAR. Phys. Rev. C 101(2), 024905 (2020)

    Article  ADS  Google Scholar 

  27. J. Rafelski, B. Muller, Phys. Rev. Lett. 48 (1982), 1066 [erratum: Phys. Rev. Lett. 56 (1986), 2334]

  28. S. Ahmad, B. E. Bonner, C. S. Chan, J. M. Clement, S. V. Efremov, E. Efstathiadis, S. E. Eiseman, A. Etkin, K. J. Foley, R. W. Hackenburg, et al. Phys. Lett. B 382 (1996), 35-39 [erratum: Phys. Lett. B 386 (1996), 496-496]

  29. S. Ahmad, B.E. Bonner, S.V. Efremov, G.S. Mutchler, E.D. Platner, H.W. Themann, Nucl. Phys. A 636, 507–524 (1998)

    Article  ADS  Google Scholar 

  30. L. Ahle et al., E-802 and E-866. Phys. Rev. C 60, 044904 (1999)

    Article  ADS  Google Scholar 

  31. B.B. Back et al., E917. Phys. Rev. Lett. 87, 242301 (2001)

    Article  ADS  Google Scholar 

  32. S. Albergo, R. Bellwied, M. Bennett, D. Boemi, B. Bonner, H. Caines, W. Christie, S. Costa, H.J. Crawford, M. Cronqvist et al., Phys. Rev. Lett. 88, 062301 (2002)

    Article  ADS  Google Scholar 

  33. P. Chung et al., E895. Phys. Rev. Lett. 91, 202301 (2003)

    Article  ADS  Google Scholar 

  34. S.V. Afanasiev et al., NA49. Phys. Rev. C 66, 054902 (2002)

    Article  ADS  Google Scholar 

  35. F. Antinori et al., NA57. Phys. Lett. B 595, 68–74 (2004)

    Article  ADS  Google Scholar 

  36. C. Adler et al., STAR. Phys. Rev. Lett. 89, 092301 (2002)

    Article  ADS  Google Scholar 

  37. K. Adcox et al., PHENIX. Phys. Rev. Lett. 89, 092302 (2002)

    Article  ADS  Google Scholar 

  38. B.B. Abelev et al., ALICE. Phys. Rev. Lett. 111, 222301 (2013)

    Article  ADS  Google Scholar 

  39. J. Chen, D. Keane, Y.G. Ma, A. Tang, Z. Xu, Phys. Rept. 760, 1–39 (2018)

    Article  ADS  Google Scholar 

  40. F. Becattini, J. Cleymans, A. Keranen, E. Suhonen, K. Redlich, Phys. Rev. C 64, 024901 (2001)

    Article  ADS  Google Scholar 

  41. P. Braun-Munzinger, J. Cleymans, H. Oeschler, K. Redlich, Nucl. Phys. A 697, 902–912 (2002)

    Article  ADS  Google Scholar 

  42. K. Redlich, A. Tounsi, Eur. Phys. J. C 24, 589–594 (2002)

    Article  Google Scholar 

  43. F. Li, C.M. Ko, Phys. Rev. C 95(5), 055203 (2017)

    Article  ADS  Google Scholar 

  44. J. Steinheimer, J. Randrup, Phys. Rev. Lett. 109, 212301 (2012)

    Article  ADS  Google Scholar 

  45. J. Steinheimer, J. Randrup, V. Koch, Phys. Rev. C 89(3), 034901 (2014)

    Article  ADS  Google Scholar 

  46. C.M. Ko, EPJ Web Conf. 171, 03002 (2018)

    Article  Google Scholar 

  47. H. Sorge, Phys. Rev. C 52, 3291–3314 (1995)

    Article  ADS  Google Scholar 

  48. H. Sorge, Phys. Lett. B 402, 251–256 (1997)

    Article  ADS  Google Scholar 

  49. S.A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina, C. Ernst, L. Gerland, M. Hofmann, S. Hofmann, J. Konopka et al., Prog. Part. Nucl. Phys. 41, 255–369 (1998)

    Article  ADS  Google Scholar 

  50. M. Bleicher, E. Zabrodin, C. Spieles, S.A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stoecker et al., J. Phys. G 25, 1859–1896 (1999)

    Article  ADS  Google Scholar 

  51. S.H. Kahana, D.E. Kahana, Y. Pang, T.J. Schlagel, Ann. Rev. Nucl. Part. Sci. 46, 31–70 (1996)

    Article  ADS  Google Scholar 

  52. B.A. Li, C.M. Ko, Nucl. Phys. A 630, 556–562 (1998)

    Article  ADS  Google Scholar 

  53. Y. Nara, EPJ Web Conf. 208, 11004 (2019)

    Article  Google Scholar 

  54. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  55. Z. w. Lin, C. M. Ko, Phys. Rev. C 65, 034904 (2002)

  56. L.W. Chen, V. Greco, C.M. Ko, P.F. Kolb, Phys. Lett. B 605, 95–100 (2005)

    Article  ADS  Google Scholar 

  57. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501–3516 (1991)

    Article  ADS  Google Scholar 

  58. B. Andersson, G. Gustafson, B. Soderberg, Z. Phys. C 20, 317 (1983)

  59. B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rept. 97, 31–145 (1983)

    Article  ADS  Google Scholar 

  60. B. Zhang, C. M. Ko, B. A. Li, Z. w. Lin, Phys. Rev. C 61 (2000), 067901

  61. Z. w. Lin, S. Pal, C. M. Ko, B. A. Li, B. Zhang, Phys. Rev. C 64, 011902 (2001)

  62. Z.W. Lin, L. Zheng, Nucl. Sci. Tech. 32(10), 113 (2021)

    Article  Google Scholar 

  63. T. Shao, J. Chen, C.M. Ko, Z.W. Lin, Phys. Rev. C 102(1), 014906 (2020)

    Article  ADS  Google Scholar 

  64. M. U. Ashraf, J. Tariq, S. Ikram, A. M. Khan, J. Butt, S. Zain, arXiv:2211.14795 [hep-ph]

  65. Y. He, Z.W. Lin, Phys. Rev. C 96(1), 014910 (2017)

    Article  ADS  Google Scholar 

  66. J. Xu, L.W. Chen, C.M. Ko, Z.W. Lin, Phys. Rev. C 85, 041901 (2012)

    Article  ADS  Google Scholar 

  67. G.S. Pradhan, R. Rath, R. Scaria, R. Sahoo, Phys. Rev. C 105(5), 054905 (2022)

    Article  ADS  Google Scholar 

  68. K.J. Sun, L.W. Chen, Phys. Rev. C 95(4), 044905 (2017)

    Article  ADS  Google Scholar 

  69. L. Adamczyk et al., STAR. Phys. Rev. C 96(4), 044904 (2017)

    Article  ADS  Google Scholar 

  70. L. Adamczyk et al., STAR. Phys. Rev. C 93(2), 021903 (2016)

    Article  ADS  Google Scholar 

  71. J. Adams et al., STAR. Phys. Rev. Lett. 98, 062301 (2007)

    Article  ADS  Google Scholar 

  72. B.I. Abelev et al., STAR. Phys. Rev. Lett. 99, 112301 (2007)

    Article  ADS  Google Scholar 

  73. C. Adler et al., STAR. Phys. Lett. B 595, 143–150 (2004)

    Article  ADS  Google Scholar 

  74. B.I. Abelev et al., STAR. Phys. Rev. C 79, 034909 (2009)

    Article  ADS  Google Scholar 

  75. S. Wheaton, J. Cleymans, Comput. Phys. Commun. 180, 84–106 (2009)

    Article  ADS  Google Scholar 

  76. C. Alt et al., NA49. Phys. Rev. C 77, 024903 (2008)

    Article  ADS  Google Scholar 

  77. C. Alt et al., NA49. Phys. Rev. C 78, 044907 (2008)

    Article  ADS  Google Scholar 

  78. C. Alt et al., NA49. Phys. Rev. C 78, 034918 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Ashraf.

Additional information

Communicated by Che-Ming Ko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, J., Ikram, S. & Ashraf, M.U. Study of strange quark density fluctuations in Au + Au Collisions at \(\sqrt{\textrm{s}_{_{\textrm{NN}}}}\) = 7.7–200 GeV from AMPT Model. Eur. Phys. J. A 59, 73 (2023). https://doi.org/10.1140/epja/s10050-023-00991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00991-z

Navigation