Skip to main content
Log in

Photons production in heavy-ion collisions as a signal of deconfinement phase

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The photon production due to conversion of two gluons into a photon, \(gg\rightarrow \gamma \), in the presence of the background gauge fields is studied within the specific mean-field approach to QCD vacuum. In this approach, mean field in the confinement phase is represented by the statistical ensemble of almost everywhere homogeneous abelian (anti-)self-dual gluon configurations, while the deconfined phase can be characterized by the purely chromomagnetic fields. The probability of gluon conversion of two gluons into a photon vanishes in the confinement phase due to the randomness of the background field configurations. The anisotropic strong electromagnetic field, generated in the collision of relativistic heavy ions, serves as a catalyst for deconfinement with the appearance of an anisotropic purely chromomagnetic mean field. Respectively, deconfined phase is characterized by nonzero probability of the conversion of two gluons into a photon with strongly anisotropic angular distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: The presented research is theoretical. All the necessary data are shown on figures and in formulas. Additional data can be obtained upon request from the authors.]

References

  1. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570. arXiv:0907.1396 [nucl-th]

    Article  ADS  Google Scholar 

  2. V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin, Phys. Rev. C 83, 054911 (2011). https://doi.org/10.1103/PhysRevC.83.054911. arXiv:1103.4239 [nucl-th]

    Article  ADS  Google Scholar 

  3. A. Bzdak, V. Skokov, Phys. Rev. Lett. 110, 192301 (2013). https://doi.org/10.1103/PhysRevLett.110.192301. arXiv:1208.5502 [hep-ph]

    Article  ADS  Google Scholar 

  4. I.A. Shovkovy, Lect. Notes Phys. 871, 13 (2013). https://doi.org/10.1007/978-3-642-37305-3_2. arXiv:1207.5081 [hep-ph]

    Article  ADS  Google Scholar 

  5. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013). https://doi.org/10.1155/2013/490495. arXiv:1301.0099 [hep-ph]

    Article  MathSciNet  Google Scholar 

  6. A. Ayala, J.D. Castano-Yepes, C.A. Dominguez, L.A. Hernandez, S. Hernandez-Ortiz, M.E. Tejeda-Yeomans, Phys. Rev. D 96, 014023 (2017), [Erratum: Phys.Rev.D 96, 119901 (2017)], https://doi.org/10.1103/PhysRevD.96.014023arXiv:1704.02433 [hep-ph]

  7. M. D’Elia, L. Maio, F. Sanfilippo, A. Stanzione, arXiv preprint arXiv:2111.11237 (2021a)

  8. B.V. Galilo, S.N. Nedelko, Phys. Rev. D 84, 094017 (2011). https://doi.org/10.1103/PhysRevD.84.094017. arXiv:1107.4737 [hep-ph]

    Article  ADS  Google Scholar 

  9. S.N. Nedelko, V.E. Voronin, Eur. Phys. J. A 51, 45 (2015). https://doi.org/10.1140/epja/i2015-15045-8. arXiv:1403.0415 [hep-ph]

    Article  ADS  Google Scholar 

  10. M. D’Elia, M. Mariti, F. Negro, Phys. Rev. Lett. 110, 082002 (2013). https://doi.org/10.1103/PhysRevLett.110.082002. arXiv:1209.0722 [hep-lat]

  11. G.S. Bali, F. Bruckmann, G. Endrodi, F. Gruber, A. Schaefer, JHEP 04, 130 (2013). https://doi.org/10.1007/JHEP04(2013)130. arXiv:1303.1328 [hep-lat]

    Article  ADS  Google Scholar 

  12. M. D’Elia, L. Maio, F. Sanfilippo, A. Stanzione, Phys. Rev. D 104, 114512 (2021). https://doi.org/10.1103/PhysRevD.104.114512. arXiv:2109.07456 [hep-lat]

    Article  ADS  Google Scholar 

  13. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Phys. Rev. D 94, 094007 (2016). https://doi.org/10.1103/PhysRevD.94.094007. arXiv:1607.08160 [hep-lat]

    Article  ADS  Google Scholar 

  14. K. Fukushima, J.M. Pawlowski, Phys. Rev. D 86, 076013 (2012). https://doi.org/10.1103/PhysRevD.86.076013. arXiv:1203.4330 [hep-ph]

    Article  ADS  Google Scholar 

  15. S. Ozaki, Phys. Rev. D 89, 054022 (2014). https://doi.org/10.1103/PhysRevD.89.054022. arXiv:1311.3137 [hep-ph]

    Article  ADS  Google Scholar 

  16. H. Leutwyler, Nucl. Phys. B 179, 129 (1981). https://doi.org/10.1016/0550-3213(81)90252-2

    Article  ADS  Google Scholar 

  17. S.N. Nedelko, V.E. Voronin, Phys. Rev. D 103, 114021 (2021). https://doi.org/10.1103/PhysRevD.103.114021. arXiv:2012.07081 [hep-ph]

    Article  ADS  Google Scholar 

  18. C. Bonati, S. Calì, M. D’Elia, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Phys. Rev. D 98, 054501 (2018). https://doi.org/10.1103/PhysRevD.98.054501. arXiv:1807.01673 [hep-lat]

    Article  ADS  Google Scholar 

  19. A. Ayala, J.D. Castaño Yepes, I. Dominguez Jimenez, J.S.S. Martín, M.E. Tejeda-Yeomans, Eur. Phys. J. A 56, 53 (2020). https://doi.org/10.1140/epja/s10050-020-00060-9. arXiv:1904.02938 [hep-ph]

    Article  ADS  Google Scholar 

  20. S.L. Adler, J.N. Bahcall, C.G. Callan, M.N. Rosenbluth, Phys. Rev. Lett. 25, 1061 (1970). https://doi.org/10.1103/PhysRevLett.25.1061

    Article  ADS  Google Scholar 

  21. V.O. Papanyan, V.I. Ritus, Z. Eksp, Teor. Fiz. 61, 2231 (1971)

    Google Scholar 

  22. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Z. Eksp, Teor. Fiz. 68, 405 (1975)

    Google Scholar 

  23. A. Adare et al., (PHENIX), Phys. Rev. Lett. 109, 122302 (2012). https://doi.org/10.1103/PhysRevLett.109.122302. arXiv:1105.4126 [nucl-ex]

  24. A. Adare et al., (PHENIX), Phys. Rev. C 91, 064904 (2015). https://doi.org/10.1103/PhysRevC.91.064904. arXiv:1405.3940 [nucl-ex]

  25. J. Adam et al., (ALICE), Phys. Lett. B 754, 235 (2016). https://doi.org/10.1016/j.physletb.2016.01.020. arXiv:1509.07324 [nucl-ex]

  26. C. Shen, C. Park, J.-F. Paquet, G.S. Denicol, S. Jeon, C. Gale, Nucl. Phys. A 956, 741 (2016). https://doi.org/10.1016/j.nuclphysa.2016.02.016. arXiv:1601.03070 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.-F. Paquet, C. Shen, G.S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016). https://doi.org/10.1103/PhysRevC.93.044906. arXiv:1509.06738 [hep-ph]

    Article  ADS  Google Scholar 

  28. R. Chatterjee, D.K. Srivastava, U.W. Heinz, C. Gale, Phys. Rev. C 75, 054909 (2007). https://doi.org/10.1103/PhysRevC.75.054909. arXiv:nucl-th/0702039

    Article  ADS  Google Scholar 

  29. H. van Hees, C. Gale, R. Rapp, Phys. Rev. C 84, 054906 (2011). https://doi.org/10.1103/PhysRevC.84.054906. arXiv:1108.2131 [hep-ph]

    Article  ADS  Google Scholar 

  30. F.-M. Liu, S.-X. Liu, Phys. Rev. C 89, 034906 (2014). https://doi.org/10.1103/PhysRevC.89.034906. arXiv:1212.6587 [nucl-th]

    Article  ADS  Google Scholar 

  31. O. Linnyk, V.P. Konchakovski, W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 88, 034904 (2013). https://doi.org/10.1103/PhysRevC.88.034904. arXiv:1304.7030 [nucl-th]

    Article  ADS  Google Scholar 

  32. B.G. Zakharov, Eur. Phys. J. C 76, 609 (2016). https://doi.org/10.1140/epjc/s10052-016-4451-8. arXiv:1609.04324 [nucl-th]

    Article  ADS  Google Scholar 

  33. B.G. Zakharov, JETP Lett. 106, 283 (2017). https://doi.org/10.1134/S0021364017170027. arXiv:1707.08602 [nucl-th]

    Article  ADS  Google Scholar 

  34. G. Vujanovic, J.-F. Paquet, S. Ryu, C. Shen, G.S. Denicol, S. Jeon, C. Gale, U. Heinz, Nucl. Phys. A 967, 692 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.105. arXiv:1704.04687 [nucl-th]

    Article  ADS  Google Scholar 

  35. V.V. Goloviznin, A.M. Snigirev, G.M. Zinovjev, JETP Lett. 98, 61 (2013). https://doi.org/10.1134/S0021364013150071. arXiv:1209.2380 [hep-ph]

    Article  ADS  Google Scholar 

  36. V.V. Goloviznin, A.V. Nikolskii, A.M. Snigirev, G.M. Zinovjev, Eur. Phys. J. A 55, 142 (2019). https://doi.org/10.1140/epja/i2019-12836-9. arXiv:1804.00559 [hep-ph]

    Article  ADS  Google Scholar 

  37. C. Shen, Nucl. Phys. A 956, 184 (2016). https://doi.org/10.1016/j.nuclphysa.2016.02.033. arXiv:1601.02563 [nucl-th]

    Article  ADS  Google Scholar 

  38. S.N. Nedelko, V.E. Voronin, Phys. Rev. D 93, 094010 (2016). https://doi.org/10.1103/PhysRevD.93.094010. arXiv:1603.01447 [hep-ph]

    Article  ADS  Google Scholar 

  39. S.N. Nedelko, V.E. Voronin, Phys. Rev. D 95, 074038 (2017). https://doi.org/10.1103/PhysRevD.95.074038. arXiv:1612.02621 [hep-ph]

    Article  ADS  Google Scholar 

  40. M. Faber, H. Markum, S. Olejnik, W. Sakuler, Phys. Lett. B 334, 145 (1994). https://doi.org/10.1016/0370-2693(94)90603-3

    Article  ADS  Google Scholar 

  41. P. J. Moran, D. B. Leinweber, in QCD Downunder II (2008) arXiv:0805.4246 [hep-lat]

  42. V.G. Bornyakov, E.M. Ilgenfritz, B.V. Martemyanov, V.K. Mitrjushkin, M. Müller-Preussker, Phys. Rev. D 87, 114508 (2013). https://doi.org/10.1103/PhysRevD.87.114508. arXiv:1304.0935 [hep-lat]

    Article  ADS  Google Scholar 

  43. N.Y. Astrakhantsev, V.V. Braguta, A.Y. Kotov, D.D. Kuznedelev, A.A. Nikolaev, Eur. Phys. J. A 57, 15 (2021). https://doi.org/10.1140/epja/s10050-020-00326-2. arXiv:1902.09325 [hep-lat]

    Article  ADS  Google Scholar 

  44. M.P. Lombardo, A. Trunin, Int. J. Mod. Phys. A 35, 2030010 (2020). https://doi.org/10.1142/S0217751X20300100. arXiv:2005.06547 [hep-lat]

    Article  ADS  Google Scholar 

  45. V.O. Papanyan, V.I. Ritus, Z. Eksp, Teor. Fiz. 65, 1756 (1973)

  46. V.I. Ritus, Z. Eksp, Teor. Fiz. 57, 2176 (1969)

    Google Scholar 

  47. V.I. Ritus, Annals Phys. 69, 555 (1972). https://doi.org/10.1016/0003-4916(72)90191-1

    Article  ADS  Google Scholar 

  48. L. McLerran, B. Schenke, Nucl. Phys. A 929, 71 (2014). https://doi.org/10.1016/j.nuclphysa.2014.06.004. arXiv:1403.7462 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Vladimir Voronin for numerous useful discussions and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Nikolskii.

Additional information

Communicated by Reinhard Alkofer.

Appendix

Appendix

The amplitude in Eq. (11) consists of 32 terms. Below an explicit form of the tensor structures and corresponding form factors are listed.

Set of tensors \(\mathcal {F}^{l}_{\mu \nu \rho }(p,k)\) includes

$$\begin{aligned} \mathcal {F}^{1}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \mu }f_{\beta \nu }f_{\lambda \rho }p_{\perp }^{\alpha }p_{\perp }^{\beta }p_{\perp }^{\lambda },~\\{} & {} \mathcal {F}^{2}_{\mu \nu \rho }(p,k)=f_{\alpha \mu }f_{\beta \nu }f_{\lambda \rho }p_{\perp }^{\alpha }p_{\perp }^{\beta }k_{\perp }^{\lambda },~\\{} & {} \mathcal {F}^{3}_{\mu \nu \rho }(p,k)=f_{\alpha \mu }f_{\beta \rho }f_{\lambda \nu }p_{\perp }^{\alpha }p_{\perp }^{\beta }k_{\perp }^{\lambda }\\ \mathcal {F}^{4}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \mu }f_{\beta \nu }f_{\lambda \rho }p_{\perp }^{\alpha }k_{\perp }^{\beta }k_{\perp }^{\lambda },~\\{} & {} \mathcal {F}^{5}_{\mu \nu \rho }(p,k)=f_{\alpha \nu }f_{\beta \rho }f_{\lambda \mu }p_{\perp }^{\alpha }p_{\perp }^{\beta }k_{\perp }^{\lambda },~\\{} & {} \mathcal {F}^{6}_{\mu \nu \rho }(p,k)=f_{\alpha \nu }f_{\beta \mu }f_{\lambda \rho }p_{\perp }^{\alpha }k_{\perp }^{\beta }k_{\perp }^{\lambda },\\ \mathcal {F}^{7}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \rho }f_{\beta \mu }f_{\lambda \nu }p_{\perp }^{\alpha }k_{\perp }^{\beta }k_{\perp }^{\lambda },~\\{} & {} \mathcal {F}^{8}_{\mu \nu \rho }(p,k)=f_{\alpha \mu }f_{\beta \nu }f_{\lambda \rho }k_{\perp }^{\alpha }k_{\perp }^{\beta }k_{\perp }^{\lambda },\\ \mathcal {F}^{9}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \mu }p_{\perp }^{\alpha }\delta _{\nu \rho }p_{\perp }^2,~\\{} & {} \mathcal {F}^{10}_{\mu \nu \rho }(p,k)=f_{\alpha \mu }p_{\perp }^{\alpha }\delta _{\nu \rho }p_{\perp }k_{\perp }, ~\\{} & {} \mathcal {F}^{11}_{\mu \nu \rho }(p,k)=f_{\alpha \mu }p_{\perp }^{\alpha }\delta _{\nu \rho }k_{\perp }^2,\\ \mathcal {F}^{12}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \mu }p_{\perp }^{\alpha }\delta ^{||}_{\nu \rho },~\\ \mathcal {F}^{13}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \nu }p_{\perp }^{\alpha }\delta _{\mu \rho }p_{\perp }^2, ~\\{} & {} \mathcal {F}^{14}_{\mu \nu \rho }(p,k)=f_{\alpha \nu }p_{\perp }^{\alpha }\delta _{\mu \rho }p_{\perp }k_{\perp },~\\{} & {} \mathcal {F}^{15}_{\mu \nu \rho }(p,k)=f_{\alpha \nu }p_{\perp }^{\alpha }\delta _{\mu \rho }k_{\perp }^2,\\ \mathcal {F}^{16}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \nu }p_{\perp }^{\alpha }\delta ^{||}_{\mu \rho },~\\ \mathcal {F}^{17}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \rho }p_{\perp }^{\alpha }\delta _{\mu \nu }p_{\perp }^2,~\\{} & {} \mathcal {F}^{18}_{\mu \nu \rho }(p,k)=f_{\alpha \rho }p_{\perp }^{\alpha }\delta _{\mu \nu }p_{\perp }k_{\perp },~\\{} & {} \mathcal {F}^{19}_{\mu \nu \rho }(p,k)=f_{\alpha \rho }p_{\perp }^{\alpha }\delta _{\mu \nu }k_{\perp }^2,\\ \mathcal {F}^{20}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \rho }p_{\perp }^{\alpha }\delta ^{||}_{\mu \nu },~\\ \mathcal {F}^{21}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \mu }k_{\perp }^{\alpha }\delta _{\nu \rho }p_{\perp }^2,~\\{} & {} \mathcal {F}^{22}_{\mu \nu \rho }(p,k)=f_{\alpha \mu }k_{\perp }^{\alpha }\delta _{\nu \rho }p_{\perp }k_{\perp },~\\{} & {} \mathcal {F}^{23}_{\mu \nu \rho }(p,k)=f_{\alpha \mu }k_{\perp }^{\alpha }\delta _{\nu \rho }k_{\perp }^2,\\ \mathcal {F}^{24}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \mu }k_{\perp }^{\alpha }\delta ^{||}_{\nu \rho },~\\ \mathcal {F}^{25}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \nu }k_{\perp }^{\alpha }\delta _{\mu \rho }p_{\perp }^2,~\\{} & {} \mathcal {F}^{26}_{\mu \nu \rho }(p,k)=f_{\alpha \nu }k_{\perp }^{\alpha }\delta _{\mu \rho }p_{\perp }k_{\perp },~\\{} & {} \mathcal {F}^{27}_{\mu \nu \rho }(p,k)=f_{\alpha \nu }k_{\perp }^{\alpha }\delta _{\mu \rho }k_{\perp }^2\\ \mathcal {F}^{28}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \nu }k_{\perp }^{\alpha }\delta ^{||}_{\mu \rho },~\\ \mathcal {F}^{29}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \rho }k_{\perp }^{\alpha }\delta _{\mu \nu }p_{\perp }^2,~\\{} & {} \mathcal {F}^{30}_{\mu \nu \rho }(p,k)=f_{\alpha \rho }k_{\perp }^{\alpha }\delta _{\mu \nu }p_{\perp }k_{\perp },~\\{} & {} \mathcal {F}^{31}_{\mu \nu \rho }(p,k)=f_{\alpha \rho }k_{\perp }^{\alpha }\delta _{\mu \nu }k_{\perp }^2,\\ \mathcal {F}^{32}_{\mu \nu \rho }(p,k)= & {} f_{\alpha \rho }k_{\perp }^{\alpha }\delta ^{||}_{\mu \nu }, \end{aligned}$$

where \(\delta ^{||}_{\alpha \beta }=\textrm{diag}(0,0,1,1)\) - Kronecker symbol in the longitudinal space. Form factors \(F^l(p,k)\) have the following representation

$$\begin{aligned}{} & {} F^l(p,k)= \frac{2\sqrt{B}}{\pi }\sum _f q_f \textrm{Tr}_{\hat{n}} |\hat{n}|^3\\{} & {} \quad \int ^{\infty }_{0}\frac{ds_{1}ds_{2}ds_{3}}{\left( t_1+t_2+t_3\right) } \frac{\xi _1\xi _2\xi _3}{\left( \xi _1+\xi _2+\xi _3+\xi _1\xi _2\xi _3\right) } ~\mathcal {P}^l(s_1,s_2,s_3)\\{} & {} \quad \times \exp \left\{ -p^{2}_{||}\phi _{1}(s_{1},s_{2},s_{3})-p_{||}k_{||}\phi _{2}(s_{1},s_{2},s_{3})-k^{2}_{||}\phi _{3}(s_{1},s_{2},s_{3}) \right. \\{} & {} \quad -p^{2}_{\perp }\phi _{4}(s_{1},s_{2},s_{3})-p_{\perp }k_{\perp }\phi _{5}(s_{1},s_{2},s_{3})\\{} & {} \quad \left. -k^{2}_{\perp }\phi _{6}(s_{1},s_{2},s_{3})-m^{2}_f(s_{1}+s_{2}+s_{3})\right\} , \\{} & {} t_j=B\left| \hat{n}\right| s_j, \ \ \xi _j=\frac{2t_j}{t_j\coth (t_j)+1} \\{} & {} \phi _1=\frac{t_1\left( t_2+t_3\right) }{t_1+t_2+t_3}, ~ \phi _2=\frac{2t_1t_2}{t_1+t_2+t_3},~ \phi _3=\frac{t_2\left( t_1+t_3\right) }{t_1+t_2+t_3},\\{} & {} \phi _4=\frac{\xi _3\left( \xi _1+\xi _2\right) }{\xi _1+\xi _2+\xi _3+\xi _1\xi _2\xi _3}, \ \phi _5= \frac{2\xi _2\xi _3}{\xi _1+\xi _2+\xi _3+\xi _1\xi _2\xi _3}, ~\\{} & {} \quad \phi _6=\frac{\xi _2\left( \xi _1+\xi _3\right) }{\xi _1+\xi _2+\xi _3+\xi _1\xi _2\xi _3}, \end{aligned}$$

where \(\mathcal {P}^l(s_1,s_2,s_3)\) - are the rational functions

$$\begin{aligned} \mathcal {P}^1(s_1,s_2,s_3) = \frac{\begin{array}{c} 32\xi _1^2 X \big [ \coth (t_1)(C_{12}+4) +4D_{23} \big ] \\ \big [ X Y_{13}(Y_{23} +\xi _3) + Y_{13}^2Y_{23} + X^2\xi _3 \big ]\end{array} }{Y_{13}\left( 2Y + X\right) ^3 }, \end{aligned}$$
$$\begin{aligned} \mathcal {P}^2(s_1,s_2,s_3){} & {} = \Big ( 16\xi _1 X\left[ \coth (t_1)\left( C_{12}+4\right) +4D_{23} \right] \\{} & {} \quad \left[ X \left( 2\xi _1Y_{23} + \xi _3 \left( Y_{23}+\xi _3 \right) \right) + Y_{13}\left( \xi _1\left( Y_{23}+\xi _2 \right) \right. \right. \\{} & {} \quad \left. \left. + \xi _3Y_{23} \right) \right. \\{} & {} \quad \left. + X^2\xi _3 \right] \Big ) \Big / \left( Y_{13}\left( Y + X\right) ^3 \right) ,\\ \mathcal {P}^3(s_1,s_2,s_3)\!{} & {} =\! \Big ( 8\xi _1 X \Big [ X \Big (\coth (t_1)\big [2\xi _1(C_{23}\xi _2\!+\!4\xi _2\!+\!\xi _3 ) \\{} & {} \quad +\xi _3(-2C_{23}\xi _2-7\xi _2+2\xi _3 ) \big ] + D_{23} \big [2\xi _1(4\xi _2+\xi _3) \\{} & {} \quad + \xi _3(2\xi _3-7\xi _2) \big ] \Big ) \\{} & {} \quad +Y_{13}\Big (\coth (t_1)\big [\xi _1(2C_{23}\xi _2+8\xi _2+\xi _3) \\{} & {} \quad -Y_{23}(2C_{23}\xi _2+8\xi _2-\xi _3)\big ] \\{} & {} \quad +D_{23}\big [\xi _1(8\xi _2+\xi _3)-8\xi _2^2-7X_{23}+\xi _3^2 \big ] \Big ) \\{} & {} \quad + X^2\xi _3D \Big ] \Big ) \Big / \left( Y_{13}\left( Y + X\right) ^3\right) ,\\ \mathcal {P}^4(s_1,s_2,s_3){} & {} = -\Big ( 8 X\xi _2 \Big [ \Big ( \coth (t_1) \big [ -2\xi _1^2(C_{23}+4)\\{} & {} \quad +2X_{12}(C_{23}+4)-X_{13}(2C_{23}\!+\!7)\!+\!\xi _3Y_{23} \big ] \\{} & {} \quad \!-\! D_{23} \big [ 8\xi _1^2\!+\!\xi _1(7\xi _3\!-\!8\xi _2)\!-\!\xi _3Y_{23} \big ] \Big )\! \!\\{} & {} \quad +X \big ( \coth (t_1)[\xi _3-2\xi _1(C_{23}+4)]\\{} & {} \quad -D_{23}[8\xi _1-\xi _3] \big ) \Big ] \Big ) \Big / \left( \left( Y + X\right) ^3 \right) ,\\ \mathcal {P}^5(s_1,s_2,s_3){} & {} = \Big (8\xi _1 X \Big [ X \big (2\coth (t_1)\xi _1[\xi _2(C_{23}+4)\\{} & {} \quad +\xi _3(2C_{23}+7)] \\{} & {} \quad +\coth (t_1)\xi _3[2\xi _3(2C_{23}+7)-\xi _2] + D_{23}(8X_{12}\\{} & {} \quad +14X_{13}-X_{23}+14\xi _3^2) \big ) \\{} & {} \quad +Y_{13} \big (\coth (t_1)\xi _1[2\xi _2(C_{23}+4)+\xi _3(2C_{23}+7)] \\{} & {} \quad -\coth (t_1)Y_{23}[2\xi _2(C_{23}+4)-\xi _3(2C_{23}+7)] \\{} & {} \quad + D_{23}(8X_{12}+7X_{13}-8\xi _2^2-X_{23}+7\xi _3^2) \big ) \\{} & {} \quad +X^2\xi _3[\coth (t_1)(2C_{23}+7)\\{} & {} \quad +7D_{23}] \Big ] \Big ) \Big / \left( Y_{13}\left( Y + X\right) ^3 \right) , \end{aligned}$$
$$\begin{aligned} \mathcal {P}^6(s_1,s_2,s_3){} & {} = -\Big ( 8X\xi _2 \big ( \coth (t_1)[-2\xi _1^2(C_{23}+4)\\{} & {} \quad +2X_{12}(C_{23}+4) \\{} & {} \quad + \xi _3(2C_{23}+7)Y_{23}-X_{13}] - D_{23}[8\xi _1^2\\{} & {} \quad +\xi _1(\xi _3-8\xi _2)-7\xi _3Y_{23}] \big ) \\{} & {} \quad + X \big [-2\coth (t_1)\xi _1(C_{23}+4)+\coth (t_1)\\{} & {} \quad \xi _3(2C_{23}+7)\\{} & {} \quad - D_{23}(8\xi _1-7\xi _3) \big ] \Big ) \Big / \left( \left( Y + X\right) ^3\right) , \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^7(s_1,s_2,s_3) = - \frac{16 X\xi _2 \big [\coth (t_1)(C_{23}+4)+4D_{23} \big ] \big [ \xi _1^2(Y_{23}+\xi _2)+\xi _3Y_{23} + X\xi _3 \big ]}{ \left( Y + X\right) ^3 }, \\{} & {} \mathcal {P}^8(s_1,s_2,s_3)= -\frac{ 32 X\xi _2 Y_{13} \big (\coth (t_1)(C_{23}+4)+4D_{23} \big ) }{\left( Y + X\right) ^3 },\\{} & {} \mathcal {P}^9(s_1,s_2,s_3) = - \frac{ \xi _1 \big [\coth (t_1)(C_{23}+4)+4D_{23} \big ] \big [X Y_{13}(Y_{23}+\xi _3) + Y_{13}^2Y_{23} + X^2\xi _3 \big ] }{ Y_{13}^2\left( Y + X\right) ^3}, \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{10}(s_1,s_2,s_3)= -\Big ( 8X\xi _1\big (Y_{13}+X\big ) \big [\big (\coth (t_1)[\xi _1(2C_{23}\xi _2\\{} & {} \quad + 8\xi _2+\xi _3)+\xi _3Y_{23}] \\{} & {} \quad + D_{23}[\xi _1(8\xi _2+\xi _3)+\xi _3Y_{23}] \big ) + X\xi _3Y \big ] \Big ) \Big / \left( Y_{13} \left( Y + X\right) ^3 \right) , \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{11}(s_1,s_2,s_3)= \\{} & {} \quad - \Big ( 8X\xi _2 \big [ \big ( \coth (t_1) [\xi _1^2(C_{23}+4)+X_{13}(2C_{23}+7)\\{} & {} \quad +\xi _3(C_{23}+3)Y_{23}] + D_{23}[4\xi _1^2+7X_{13}+3\xi _3Y_{23}] \big ) \\{} & {} \quad +X \big ( \coth (t_1)\xi _1(C_{23}+4)+\coth (t_1)\xi _3(C_{23}+3)\\{} & {} \quad +D_{23}(4\xi _1+3\xi _3) \big ) \big ] \Big ) \Big / \left( \left( Y + X\right) ^3 \right) , \\{} & {} \mathcal {P}^{12}(s_1,s_2,s_3)= \Big ( 4X \big [ Y_{13}[\coth (t_1)(\xi _1(4C_{23}+15)\\{} & {} \quad -\xi _2-\xi _3 +D_{23}(15\xi _1-\xi _2-\xi _3)] \\{} & {} \quad - X [\coth (t_1)(\xi _3-\xi _1(4C_{23}+15)) \\{} & {} \quad -D_{23}(15\xi _1-\xi _3)] \big ] \Big ) \Big / \left( Y_{13}\left( Y +X\right) ^3 \right) , \end{aligned}$$
$$\begin{aligned} \mathcal {P}^{13}(s_1,s_2,s_3) = -\frac{\begin{array}{c} 8X\xi _1 \big [ \coth (t_1)(C_{23}+4)+4D_{23} \big ]\\ \big [ XY_{13}(Y_{23}+\xi _3) + ^4Y_{13}^2Y_{23}+^4X\xi _3 \big ] \end{array}}{Y_{13}\left( Y + X\right) ^3 }, \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{14}(s_1,s_2,s_3)= -\Big ( 8 X\xi _1 \big (Y_{13}+X \big ) \big (\coth (t_1)[2X_{12}(C_{23}+4)\\{} & {} \quad +X_{13}(2C_{23}+7)+\xi _3(2C_{23}+7)Y_{23}]\\{} & {} \quad + D_{23}[\xi _1(8\xi _2+7\xi _3)+7\xi _3Y_{23}] + X\xi _3[\coth (t_1)(2C_{23}+7)\\{} & {} \quad +7D_{23}] \big ) \Big ) \Big / \left( Y_{13}\left( Y + X\right) ^3 \right) ,\\{} & {} \mathcal {P}^{15}(s_1,s_2,s_3) \\{} & {} \quad = - \Big ( 8X\xi _2 \big [ \big ( \coth (t_1) [\xi _1^2(C_{23}+4)-\xi _3(C_{23}+3)Y_{23}\\{} & {} \quad +X_{13}] + D_{23}[4\xi _1^2+X_{13}-3\xi _3Y_{23}] \big ) \\{} & {} \quad +X \big ( \coth (t_1)\xi _1(C_{23}+4)-\coth (t_1)\xi _3(C_{23}+3)\\{} & {} \quad +D_{23}(4\xi _1-3\xi _3) \big ) \big ] \Big ) \Big / \left( \left( Y + X\right) ^3 \right) ,\\{} & {} \mathcal {P}^{16}(s_1,s_2,s_3)\!=\! \Big ( 4X \big [ Y_{13}[\coth (t_1)(\xi _1(2C_{23}\!+\!9) \\{} & {} \quad -(2C_{23}+7)Y_{23})+D_{23}(9\xi _1-7Y_{23})] \\{} & {} \quad - X [-\coth (t_1)\xi _1(2C_{23}+9)+\coth (t_1)\xi _3(2C_{23}+7) \\{} & {} \quad - D_{23}(9\xi _1-7\xi _3)] \big ] \Big ) \Big / \left( Y_{13}\left( Y +X\right) ^3 \right) , \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{17}(s_1,s_2,s_3) = -\frac{ 8X\xi _1\big (4D_{23} + \coth (t_1)(4 + C_{23})\big )\big (X^2\xi _1 + Y_{13}^2Y_{23} + XY_{13}(Y_{23} + \xi _3) \big ) }{BY_{13}^2(X + Y)^3},\\{} & {} \mathcal {P}^{18}(s_1,s_2,s_3) = - \frac{16X\xi _2 \big [ \coth (t_1)(C_{23}+4)+4D_{23} \big ] \big [Y_{13}Y_{23} +X\xi _3 \big ]}{Y_{13}\left( Y + X\right) ^3 },\\{} & {} \mathcal {P}^{19}(s_1,s_2,s_3)= \frac{ 8X\xi _2 \big (\coth (t_1)(C_{23}+4)+4D_{23} \big ) \big (\xi _1^2+2\xi _1Y_{23}+\xi _3Y_{23} + XY_{13} \big ) }{\left( Y + X\right) ^3 },\\{} & {} \mathcal {P}^{20}(s_1,s_2,s_3) = \frac{8 \big (\coth (t_1) (C_{23}+4)+4D_{23}\big ) \big (Y_{13}(\xi _1-Y_{23})+ X(\xi _1-\xi _3)\big )}{(Y_{13} \left( Y + X\right) ^2)}, \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{21}(s_1,s_2,s_3)\\{} & {} \quad = -\Big ( 8X_{12}\xi _1 \big [X\xi _3\big (\coth (t_1)(2\xi _1(C_{23}+3)+2C_{23}\xi _3\\{} & {} \qquad -\xi _2+6\xi _3)+ D_{23}(6\xi _1-\xi _2+6\xi _3)\big ) \\{} & {} \qquad +\xi _3Y_{13}\big (\coth (t_1)(\xi _3(C_{23}+3)Y_{13}-\xi _2^2(C_{23}+4)-X_{23})\\{} & {} \qquad - D_{23}(-3\xi _3Y_{13}+4\xi _2^2+X_{23})\big ) \\{} & {} \qquad + X^2\xi _3^2(\coth (t_1)(C_{23}+3)+3D_{23}) \big ] \Big ) \Big / \left( Y_{13}\left( Y + X\right) ^3 \right) , \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{22}(s_1,s_2,s_3)= \Big ( 8 X\xi _2 \big ( \coth (t_1)[2X_{12}(C_{23}+4)\\{} & {} \quad +X_{13}(2C_{23}+7)+\xi _3(2C_{23}+7)Y_{23}]\\{} & {} \quad + D_{23}[\xi _1(8\xi _2+7\xi _3)+7\xi _3Y_{23}] + X\xi _3[\coth (t_1)(2C_{23}+7)\\{} & {} \quad +7D_{23}] \big ) \Big ) \Big / \left( Y_{13}\left( Y + X\right) ^3 \right) , \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{23}(s_1,s_2,s_3)=-\frac{1}{4}\mathcal {P}^{8}(s_1,s_2,s_3),\\{} & {} \mathcal {P}^{24}(s_1,s_2,s_3)= \Big ( 4 X\big [\coth (t_1)(2C_{23}\xi _1-2C_{23}\xi _2+2C_{23}\xi _3\\{} & {} \quad +7\xi _1-9\xi _2+7\xi _3) + D_{23}(7\xi _1-9\xi _2+7\xi _3) \\{} & {} \quad +X(\coth (t_1)(2C_{23}+7)+7D_{23}) \big ] \Big ) \Big / \left( Y +X\right) ^2,\\{} & {} \mathcal {P}^{25}(s_1,s_2,s_3)= -\Big ( 8X_{12}\xi _1 \big [X\xi _3\big (\coth (t_1)(2\xi _1(C_{23}+3)\\{} & {} \quad +2C_{23}\xi _2+2C_{23}\xi _3+7\xi _2+6\xi _3)\\{} & {} \quad +D_{23}(6\xi _1+7\xi _2+6\xi _3)\big )+ \xi _3Y_{13}\big (\coth (t_1)(\xi _3(C_{23}+3)Y_{13}\\{} & {} \quad +\xi _2^2(C_{23}+4)-X_{23}(2C_{23}+7)) \\{} & {} \quad +D_{23}(3\xi _3Y_{13}+4\xi _2^2+ 7X_{23})\big )+ X^2\xi _3^2(\coth (t_1)(C_{23}+3)\\{} & {} \quad +3D_{23}) \big ] \Big ) \Big / \left( Y_{13}\left( Y + X\right) ^3 \right) , \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{26}(s_1,s_2,s_3) = \frac{\begin{array}{c} 8X \big (\coth (t_1)[\xi _1(2C_{23}\xi _2+8\xi _2+\xi _3)+\xi _3Y_{23}]\\ + D_{23}[\xi _1(8\xi _2+\xi _3)+\xi _3Y_{23}]+X\xi _3D \big )\end{array} }{ \left( Y + X\right) ^3 }, \\{} & {} \mathcal {P}^{27}(s_1,s_2,s_3)=-\frac{1}{4}\mathcal {P}^{8}(s_1,s_2,s_3), \\ \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{28}(s_1,s_2,s_3)\\{} & {} \quad = \frac{\begin{array}{c}4X \big (\coth (t_1)[-4C_{23}\xi _2+\xi _1-15\xi _2+\xi _3]\\ +D_{23}[Y_{13}-15\xi _2] + XD \big )\end{array}}{\left( Y + X\right) ^3 }, \\{} & {} \mathcal {P}^{29}(s_1,s_2,s_3)\\{} & {} \quad = - \frac{\begin{array}{c} \xi _1 \big [\coth (t_1)(C_{23}+4)+4D_{23} \big ]\\ \big [X Y_{13}Y_{23} +Y_{13}(\xi _1(Y_{23}+\xi _2)+Y_{23}^2) + X^2\xi _3 \big ]\end{array} }{Y_{13}^2\left( Y + X\right) ^3}, \end{aligned}$$
$$\begin{aligned}{} & {} \mathcal {P}^{30}(s_1,s_2,s_3)\\{} & {} \quad = -\frac{16 X\xi _1\xi _2 [\coth (t_1)(C_{23}+4)+4D_{23}][Y_{13}+D]}{\left( Y + X\right) ^3 },\\{} & {} \mathcal {P}^{31}(s_1,s_2,s_3)=-\frac{1}{4}\mathcal {P}^{8}(s_1,s_2,s_3),\\{} & {} \mathcal {P}^{32}(s_1,s_2,s_3)\\{} & {} \quad = \frac{8 X \big (\coth (t_1)(C_{23}+4)+4D_{23}\big ) \big (Y_{13}-\xi _2 +X\big ) }{\left( Y + X\right) ^3 }, \end{aligned}$$

where the following notations is used

$$\begin{aligned} X= & {} \xi _1\xi _2\xi _3,~ X_{ij}=\xi _i\xi _j,~ Y=\xi _1+\xi _2+\xi _3,~ Y_{ij}=\xi _i+\xi _j, \\ C= & {} \coth (t_1)\coth (t_2)\coth (t_3),~ C_{ij}=\coth (t_i)\coth (t_j), \\ D= & {} \coth (t_1)+\coth (t_2)+\coth (t_3),~ D_{ij}=\coth (t_i)+\coth (t_j). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedelko, S., Nikolskii, A. Photons production in heavy-ion collisions as a signal of deconfinement phase. Eur. Phys. J. A 59, 70 (2023). https://doi.org/10.1140/epja/s10050-023-00986-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00986-w

Navigation