Skip to main content

Advertisement

Log in

Relevance of β-delayed neutron data for reactor, nuclear physics and astrophysics applications

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Initially, yields (or abundances) and branching ratios of β-delayed neutrons (βdn) from fission products (Pn-values) have had their main importance in nuclear reactor control. At that time, the six-group mathematical approximation of the time-dependence of βdn-data in terms of the so-called “Keepin groups” was generally accepted. Later, with the development of high-resolution neutron spectroscopy, βdn data have provided important information on nuclear-structure properties at intermediate excitation energy in nuclei far from stability, as well as in nuclear astrophysics. In this paper, I will present some examples of the βdn-studies performed by the Kernchemie Mainz group during the past three decades. This work has been recognized as an example of “broad scientific diversity” which has led to my nomination for the 2014 Hans A. Bethe prize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated or analysed during this study are included in this published article.]

References

  1. R.B. Roberts, R.C. Meyer, P. Wang, Phys. Rev. 55, 510 (1939)

    ADS  Google Scholar 

  2. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    ADS  Google Scholar 

  3. G.R. Keepin et al., Phys. Rev. 107, 1044 (1957)

    ADS  Google Scholar 

  4. Proc. 2nd IAEA Symp. on Physics and Chemistry of Fission; Int. Atomic Energy Agency, Vienna (1969)

  5. Proc. IAEA Consultants Meeting on Delayed Neutron Properties, Vienna, INDC(NDS)-107/G (1979)

  6. G.R. Keepin et al., Physics of Nuclear Kinetics (Addison-Wesley Publ. Co., Boston, 1965)

    Google Scholar 

  7. S. Shalev and J. Cuttler, Nucl. Sci. Eng. 51, 52 (1973); and refs. therein

  8. H. Franz et al., Nucl. Instr. Meth. 144, 253 (1977)

    Google Scholar 

  9. H. Ohm, K.-L. Kratz, S.G. Prussin, Nucl. Instr. Meth. A256, 76 (1987)

    ADS  Google Scholar 

  10. H. Franz et al., Phys. Rev. Lett. 33(14), 859 (1974)

    ADS  Google Scholar 

  11. K.-L. Kratz et al., Nucl. Phys. A 317, 335 (1979)

    ADS  Google Scholar 

  12. H. Ohm et al., Z. Phys. A 296, 23 (1980)

    ADS  Google Scholar 

  13. A. Schröder et al., Phys. Lett. 90B(1,2), 57 (1980)

    ADS  Google Scholar 

  14. K.-L. Kratz et al., Z. Phys. A 312, 43 (1983)

    ADS  Google Scholar 

  15. K.-L. Kratz et al., Phys. Lett. 86B(1), 21 (1979)

    ADS  MathSciNet  Google Scholar 

  16. K.-L. Kratz et al., Z. Phys. A 306, 239 (1982)

    ADS  Google Scholar 

  17. S. Raman et al., Phys. Rev. C 28(2), 602 (1983)

    ADS  Google Scholar 

  18. K.-L. Kratz, in: NEANDC Specialists Meeting on Yields and Decay Data of Fission Product Nuclides; BNL 51778 (1983)

  19. K.-L. Kratz et al., Astron. Astrophys. 125, 381 (1983)

    ADS  Google Scholar 

  20. B. Leist et al., Z. Phys. A 322, 531 (1983)

    ADS  Google Scholar 

  21. W. Ziegert et al., Phys. Rev. Lett. 55(18), 1935 (1985)

    ADS  Google Scholar 

  22. K.-L. Kratz et al., Mem. S. A. It. 72(2), 453 (2001)

    ADS  Google Scholar 

  23. G.A. Cowan, C.J. Orth, Proc. 2nd Conf. Peaceful Uses of Atomic Energy, vol. 7 (United Nations, Geneva, 1958), p. 328

  24. P. Del Marmol, Nucl. Data Tables A6, 141 (1969)

    ADS  Google Scholar 

  25. H.D. Schüssler, G. Herrmann, Radiochim. Acta 18, 123 (1972)

    Google Scholar 

  26. L. Tomlinson, ADNDT 12, 179 (1973)

    ADS  Google Scholar 

  27. S. Amiel, Proc. IAEA Panel on Fission Product Nuclear Data, Vol. II, p. 33 (1973)

  28. K.-L. Kratz, G. Herrmann, Radiochem. Radioanal. Lett. 13, 385 (1973)

    Google Scholar 

  29. G. Rudstam, E. Lund, Phys. Rev. C13, 321 (1976)

  30. K.-L. Kratz, G. Herrmann, Nucl. Phys. A 229, 179 (1974)

    ADS  Google Scholar 

  31. K.-L. Kratz, G. Herrmann, Radiochim. Acta 25, 1 (1978)

    Google Scholar 

  32. G. Rudstam, E. Lund, Phys. Rev. C13, 1544 (1976)

  33. S. Amiel, H. Feldstein, Phys. Lett. 31B, 59 (1970)

    ADS  Google Scholar 

  34. A.C. Pappas, T. Sverdrup, Nucl. Phys. 188, 48 (1972)

    Google Scholar 

  35. K. Takahashi, Prog. Theor. Phys. (Kyoto) 47, 1500 (1972)

    ADS  Google Scholar 

  36. K.-L. Kratz, G. Herrmann, Z. Phys. 263, 435 (1973)

    ADS  Google Scholar 

  37. B. Pfeiffer, K.-L. Kratz, P. Möller, Prog. Nucl. Energy 41(1–4), 39 (2002)

    Google Scholar 

  38. C.L. Duke et al., Nucl. Phys. A 151, 609 (1970)

    ADS  Google Scholar 

  39. W. Rudolph, K.-L. Kratz, Z. Phys. A 281, 269 (1977)

    ADS  Google Scholar 

  40. K.-L. Kratz, in: Proc. 4th Int. Conf. on Nuclei Far from Stability, Helsingor, CERN-81-09, p. 317 (1981)

  41. K.-L. Kratz, K. Farouqi, P. Möller, ApJ. 792, 6 (2014)

    ADS  Google Scholar 

  42. P. Möller, B. Pfeiffer, K.-L. Kratz, Phys. Rev. C 67, 055802 (2003)

    ADS  Google Scholar 

  43. P. Möller et al., Phys. Rev. Lett. 108, 052501 (2012)

  44. E.A. McCutchan et al., Phys. Rev. C 86, 041305(R) (2012)

    ADS  Google Scholar 

  45. W. Ziegert et al., in: Proc. 4th Int. Conf. on Nuclei far from Stability, CERN 81-09, p. 327 (1981)

  46. L.C. Carraz et al., Phys. Lett. 109, 419 (1982)

    Google Scholar 

  47. F.M. Nuh et al., Nucl. Phys. A 293, 410 (1977)

    ADS  Google Scholar 

  48. R. Batchelor, R. Ames, T.H.R. Skyrme, Rev. Sci. Instrum. 26, 1037 (1955)

    ADS  Google Scholar 

  49. S. Shalev and G. Rudstam, Nucl. Phys. A230 (1974)

  50. G.T. Ewan et al., Z. Phys. A 318, 309 (1984)

    ADS  Google Scholar 

  51. P. Hoff et al., Phys. Rev. Lett. 77, 1020 (1996)

    ADS  Google Scholar 

  52. R.E. Azuma et al., Phys. Rev. Lett. 43, 1652 (1979)

    ADS  Google Scholar 

  53. H. Ohm, W. Rudolph, K.-L. Kratz, Nucl. Phys. A 274, 45 (1976)

    ADS  Google Scholar 

  54. B. Steinmüller, Diploma Thesis, Univ. Mainz, unpublished (1986)

  55. K.-L. Kratz, B. Steinmüller, H. Gabelmann, Jahrestagung Kerntechnik ’86, D. Atomforum e.V., ISSN 0720-9207 (1986)

  56. K.-L. Kratz et al., Phys. Lett. 65B, 231 (1976)

    ADS  Google Scholar 

  57. K.-L. Kratz et al., Phys. Lett. 103B, 305 (1981)

    ADS  Google Scholar 

  58. K.-L. Kratz, Nucl. Phys. A 417, 447 (1984)

    ADS  Google Scholar 

  59. K.-L. Kratz, H. Ohm, Z. Phys. A 295, 199 (1980)

    ADS  Google Scholar 

  60. E. Krausmann et al., Phys. Rev. C 53, 469 (1996)

    ADS  Google Scholar 

  61. K. Wolke et al., Z. Phys. A 334, 491 (1989)

    ADS  Google Scholar 

  62. V. Harms, K.-L. Kratz, M. Wiescher, Phys. Rev. C 43, 2849 (1991)

    ADS  Google Scholar 

  63. Delayed Neutron Properties, Proc. Specialists’ Meeting, Birmingham, England, ISBN 07044 0926 7 (1987)

  64. D. Saphier et al., Nucl. Sci. Eng. 85, 139 (1977)

    Google Scholar 

  65. T.R. England et al., Nucl. Sci. Eng. 85, 139 (1983)

    ADS  Google Scholar 

  66. G. Rudstam, Nucl. Sci. Eng. 80, 238 (1982)

    ADS  Google Scholar 

  67. W.A. Schier et al., NIM 227, 549 (1984)

    ADS  Google Scholar 

  68. R.S. Tanczyn et al., Nucl. Sci Eng. 94, 353 (1986)

    ADS  Google Scholar 

  69. K. Takahashi, M. Yamada, Prog. Theor. Phys. 41, 1470 (1967)

    ADS  Google Scholar 

  70. J. Krumlinde, P. Möller, Nucl. Phys. A 417, 419 (1984)

    ADS  Google Scholar 

  71. D. Saphier, S. Yiftah, Nucl. Sci. Eng. 42, 272 (1970)

    ADS  Google Scholar 

  72. K.-L. Kratz et al., ApJ 403, 216 (1993)

    ADS  Google Scholar 

  73. K. Farouqi et al., ApJ 712, 1359 (2010)

    ADS  Google Scholar 

  74. K.-L. Kratz et al., Z. Phys. A 325, 489 (1986)

    ADS  Google Scholar 

  75. A. Arndt et al., Phys. Rev. C 84, 061307 (2011)

    ADS  Google Scholar 

  76. D.E. Sandler, S.E. Koonin, W.A. Fowler, ApJ 259, 908 (1982)

    ADS  Google Scholar 

Download references

Acknowledgements

I am indepted to all my former students and a large number of colleagues for their collaboration during the past four decades. In particular, I would like to mention the Mainz beta-delayed neutron group, namely O. Arndt, W. Böhmer, I. Dillmann, K. Farouqi, H. Gabelmann, O. Hallmann, M. Hannawald, T. Kautzsch, G. Lhersonneau, B. Leist, T. Mehren, H. Ohm, W. Rudolf, A. Schröder, B. Steinmüller, A. Wöhr and W. Ziegert. Most of them have collaborated closely with Franz Käppeler over the years. Among the colleagues who have been most influential for different aspects of the βdn-work discussed in this paper, I would like to thank P. Möller (LANL), F.-K. Thielemann (Basel), W. B. Walters (Maryland), M. Wiescher (Notre Dame), U. Köster (CERN, ILL Grenoble), U. Ott (Mainz), H. Schatz (Michigan State), O. Sorlin (GANIL) and M. Busso (Perugia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Ludwig Kratz.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kratz, KL. Relevance of β-delayed neutron data for reactor, nuclear physics and astrophysics applications. Eur. Phys. J. A 59, 99 (2023). https://doi.org/10.1140/epja/s10050-023-00971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00971-3

Navigation