Skip to main content

Advertisement

Log in

Prompt emission of \(\gamma \)-rays and neutrons from the fast neutron induced fission of \(^{232}\)Th at neutron energies near and above the fission threshold

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Measurements of prompt fission \(\gamma \)-rays and neutrons emitted in the fast neutron induced fission of \(^{232}\)Th have been carried out at incident neutron energies of 1.5 MeV, 2.1 MeV and 2.8 MeV. The \(\gamma \)-rays were recorded using two \(\hbox {CeBr}_{{3}}\) scintillation detectors in coincidence with a twin section fission trigger ionisation chamber while the neutrons were detected using two EJ301 liquid scintillation detectors. The energy spectra of \(\gamma \)-rays were obtained after unfolding the detected pulse height spectrum using the response matrix of the \(\hbox {CeBr}_{{3}}\) detectors. The extracted prompt fission \(\gamma \)-ray spectra for \(^{232}\)Th(n,f) when compared with the existing data of \(^{252}\)Cf(sf),\(^{239}\)Pu(n,f) and \(^{238}\)U(n,f), showed noticeably lower intensity of photons at energies less than 0.7 MeV. No significant excitation energy dependence of the spectral characteristics of prompt fission \(\gamma \)-ray spectra for \(^{232}\)Th(n,f) has been observed. The time-of-flight spectra measured using EJ301 detectors with respect to the twin section fission trigger chamber were used to determine the prompt fission neutron energy spectra at all the three incident neutron energies mentioned above. The measured spectra were then fitted using Maxwell and Watt parametrizations to derive the average prompt fission neutron energy. It is found that GEF describes neutron data well, but fails to corroborate with gamma data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The authors can be contacted for the data presented in this article.]

References

  1. Alf G\(\ddot{oo}\)k, Franz-Josef Hambsch, Stephan Oberstedt, and Marzio Vidali, Phys. Rev. C 98, 044615 (2018)

  2. L. Thulliez, O. Litaize, O. Serot, A. Chebboubi, Phys. Rev. C 100, 044616 (2019)

    Article  ADS  Google Scholar 

  3. A. Al-Adili, D. Tarrío, K. Jansson, V. Rakopoulos, A. Solders, S. Pomp et al., Phys. Rev. C 102, 064610 (2020)

    Article  ADS  Google Scholar 

  4. Jorgen Randrup, Ramona Vogt, Phys. Rev. Lett. 127, 062502 (2021)

    Article  ADS  Google Scholar 

  5. Aurel Bulgac, Ibrahim Abdurrahman, Shi Jin, Kyle Godbey, Nicolas Schunck, Ionel Stetcu, Phys. Rev. Lett. 126, 142502 (2021)

    Article  ADS  Google Scholar 

  6. J. Wilson, D. Thisse, M. Lebois et al., Nature (London) 590, 566 (2021)

    Article  ADS  Google Scholar 

  7. I. Stetcu, A.E. Lovell, P. Talou, T. Kawano, S. Marin, S.A. Pozzi, A. Bulgac, Phys. Rev. Lett. 127, 222502 (2021)

    Article  ADS  Google Scholar 

  8. Aurel Bulgac, Ibrahim Abdurrahman, Kyle Godbey, Ionel Stetcu, Phys. Rev. Lett. 128, 022501 (2022)

    Article  ADS  Google Scholar 

  9. C. Wagemans, The Nuclear Fission Process (CRC, Boca Raton, 1991), pp.498–501

    Google Scholar 

  10. Matthew J. Marcath, Robert C. Haight, Ramona Vogt, Matthew Devlin, Patrick Talou, Ionel Stetcu et al., Phys. Rev. C 97, 044622 (2018)

    Article  ADS  Google Scholar 

  11. K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107–221 (2016)

    Article  ADS  Google Scholar 

  12. J.M. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 222, 263–266 (2018)

    Article  ADS  Google Scholar 

  13. P. Talou, I. Stetcu, P. Jaffke, M.E. Rising, A.E. Lovell, T. Kawano, Comput. Phys. Commun. 269, 108087 (2021)

    Article  Google Scholar 

  14. O. Litaize, O. Serot, Phys. Rev. C 82, 054616 (2010)

    Article  ADS  Google Scholar 

  15. A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, T.A. Bredeweg, R.C. Haight, A. C. Hayes-Sterbenz, H.Y. Lee, J.M. O\(^{\prime }\)Donnell and J.L. Ullmann, Phys. Rev. C 90, 014602 (2014)

  16. J.L. Ullman, E.M. Bond, T.A. Bredeweg, A. Couture, R.C. Haight, M. Jandel, T. Kawano, H.Y. Lee, J.M. O\(^{\prime }\)Donnell, A.C. Hayes, I. Stetcu et al., Phys. Rev. C 87, 044607 (2013)

  17. A. Gatera, T. Belgya, W. Geerts et al., Phys. Rev. C 95, 064609 (2017)

    Article  ADS  Google Scholar 

  18. S. Oberstedt, A. Oberstedt, A. Gatera et al., Phys. Rev. C 93, 054603 (2016)

    Article  ADS  Google Scholar 

  19. A. Chatillon, G. Bélier, T. Granier, B. Laurent, B. Morillon, J. Taieb, Phys. Rev. C 89, 014611 (2014)

    Article  ADS  Google Scholar 

  20. K.J. Kelly, M. Devlin, J.M. O’Donnell, J.A. Gomez, D. Neudecker, R.C. Haight, T.N. Taddeucci, S.M. Mosby, H.Y. Lee, C.Y. Wu, R. Henderson et al., Phys. Rev. C 102, 034615 (2020)

    Article  ADS  Google Scholar 

  21. E. Blain, A. Daskalakis, R.C. Block, Y. Danon, Phys. Rev. C 95, 064615 (2017)

  22. N. Colonna, F. Belloni, E. Berthoumieux, M. Calviani, C. Domingo-Pardo, C. Guerrero, D. Karadimos, C. Lederer, C. Massimi, C. Paradela et al., Energy Environ. Sci. 3, 1910–1917 (2010)

    Article  Google Scholar 

  23. H. Makii, K. Nishio, K. Hirose, R. Orlandi, R. Léguillon, T. Ogawa, T. Soldner, U. K\(\ddot{o}\)ster, A. Pollitt et al., Phys. Rev. C 100, 044610 (2019)

  24. D. Gjestvang, S. Siem, F. Zeiser, J. Randrup, R. Vogt, J.N. Wilson, F. Bello-Garrote, L.A. Bernstein, D.L. Bleuel, M. Guttormsen et al., Phys. Rev. C 103, 034609 (2021)

    Article  ADS  Google Scholar 

  25. A. Sardet, T. Granier, B. Laurent, A. Oberstedt, Phys. Procedia 47, 144–149 (2013)

    Article  ADS  Google Scholar 

  26. G. Mishra, R.G. Thomas, A. Kumar, A. Mitra, S. De, S.V. Suryanarayana, B.K. Nayak, Nuclear Inst. Methods Phys. Res. A 921, 33–37 (2019)

    Article  ADS  Google Scholar 

  27. https://www.mesytec.com/products/nuclear-physics/MPD-4.html

  28. S. De, G. Mishra, R.G. Thomas, A. Kumar, A. Mitra, B.K. Nayak, Eur. Phys. J. A 56, 1–7 (2020)

    Article  Google Scholar 

  29. J.W. Meadows, D.L. Smith, Argonne National Laboratory Reports, ANL 7938 Physics (1972)

  30. R. Pachuau, B. Lalremruata, N. Otuka, L.R. Hlondo, L.R.M. Punte, H.H. Thanga, Nucl. Sci. Eng. 187(1), 70–80 (2017)

    Article  ADS  Google Scholar 

  31. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce et al., Nucl. Instrum. Meth. A 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  32. R. Billnert, F.-J. Hambsch, A. Oberstedt, S. Oberstedt, Phys. Rev. C 87, 024601 (2013)

    Article  ADS  Google Scholar 

  33. L. Qi, M. Lebois, J.N. Wilson, A. Chatillon, S. Courtin, G. Fruet, G. Georgiev, D.G. Jenkins, B. Laurent, L. Le Meur, A. Maj, P. Marini et al., Phys. Rev. C 98, 014612 (2018)

    Article  ADS  Google Scholar 

  34. S. De, R.G. Thomas, P.C. Rout, S.V. Suryanarayana, B.K. Nayak, A. Saxena, JINST 13, T02010 (2018)

    Article  ADS  Google Scholar 

  35. L. Qi, C. Schmitt, M. Lebois, A. Oberstedt, S. Oberstedt, J. N. Wilson, A. Al-Adili, A. Chatillon, D. Choudhury, A. Gatera, G. Georgiev, A. G\(\ddot{oo}\)k, B. Laurent, A. Maj, I. Matea, S. J. Rose, B. Wasilewska and F. Zeiser, Eur. Phys. J. A (2020) 56:98

  36. P. Talou, R. Vogt, J. Randrup, M.E. Rising, S.A. Pozzi, J. Verbeke, M.T. Andrews, S.D. Clarke, P. Jaffke, M. Jandel, T. Kawano et al., Eur. Phys. J. A 54, 9 (2018)

    Article  ADS  Google Scholar 

  37. A.D. Carlson, V.G. Pronyaev, R. Capote, G.M. Hale et al., Nuclear Data Sheets 110, 3215 (2009)

    Article  ADS  Google Scholar 

  38. P.C. Rout, A. Gandhi, T. Basak, R.G. Thomas, C. Ghosh et al., JINST 13, P01027 (2018)

    Article  Google Scholar 

  39. J. Terrell, Phys. Rev. 113, 527 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  40. W. Mannhart et al., INDC(NDS)-220, 305 (International Atomic Energy Agency, Vienna, 1989), pp.305–336

    Google Scholar 

  41. B.E. Watt, Phys. Rev. 87, 1037 (1952)

    Article  ADS  Google Scholar 

  42. V.V. Desai, B.K. Nayak, A. Saxena, S.V. Suryanarayana, R. Capote, Phys. Rev. C 92, 014609 (2015)

    Article  ADS  Google Scholar 

  43. T. Miura, M. Baba, T. Win, M. Ibaraki, Y. Hirasawa et al., J. Nucl. Sci. Tech. Suppl. 2, 409–412 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the FOTIA staff for their support and the smooth operation of accelerator during the experiment and Mr. Rohan Turbhekar, Target Lab, TIFR, for providing the Lithium foils for the experiment. They are thankful to Dr. A.K. Gupta for his constant encouragement and support of this programme. They would also like to thank Dr. R.K. Choudhury and Dr. A. Saxena for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Thomas.

Additional information

Communicated by R. Janssens.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, S., Thomas, R.G., Mishra, G. et al. Prompt emission of \(\gamma \)-rays and neutrons from the fast neutron induced fission of \(^{232}\)Th at neutron energies near and above the fission threshold. Eur. Phys. J. A 58, 217 (2022). https://doi.org/10.1140/epja/s10050-022-00877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00877-6

Navigation