Skip to main content
Log in

Double-folding nucleus–nucleus interaction potential based on the self-consistent calculations

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The nucleon density profiles of spherical nuclei are calculated within the self-consistent HFB approach based on the non-covariant energy density functional. For the reactions with light nuclei, the nucleus–nucleus interaction potentials are calculated in the double-folding form with these nucleon densities. The characteristics of the Coulomb barriers obtained are in good agreement with those required to describe the sub-barrier complete fusion. The energy density functional used provides a reliable basis to calculate the nucleus–nucleus potential in the reactions of astrophysical interest. A simple parametrization for the nuclear part of the nucleus–nucleus interaction is proposed to estimate the height, position, and curvature of the Coulomb barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Any data that support the findings of this study are included in the article.]

References

  1. X. Viñas, M. Centelles, X. Roca-Maza, M. Warda, AIP Conf. Proc. 1491, 101 (2012)

    ADS  Google Scholar 

  2. Lie-Wen. Chen, Che Ming Ko, Bao-An. Li, Phys. Rev. C 72, 064309 (2005)

    ADS  Google Scholar 

  3. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001)

    ADS  Google Scholar 

  4. G. Scamps, D. Lacroix, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 88, 064327 (2013)

    ADS  Google Scholar 

  5. G.G. Adamian, N.V. Antonenko, L.A. Malov, G. Scamps, D. Lacroix, Phys. Rev. C 90, 034322 (2014)

    ADS  Google Scholar 

  6. I. Dutt, R.K. Puri, Phys. Rev. C 81, 047601 (2010)

    ADS  Google Scholar 

  7. N. Tajima, Progr. Theor. Phys. Suppl. 142, 265 (2001)

    ADS  Google Scholar 

  8. P. Sarriguren, M.K. Gaidarov, E.M. de Guerra, A.N. Antonov, Phys. Rev. C 76, 044322 (2007)

    ADS  Google Scholar 

  9. D.J. Horen, G.R. Satchler, S.A. Fayans, E.L. Trykov, Nucl. Phys. A 600, 193 (1996)

    ADS  Google Scholar 

  10. A.S. Umar, V.E. Oberacker, Phys. Rev. C 74, 021601(R) (2006)

    ADS  Google Scholar 

  11. A.S. Umar, V.E. Oberacker, Phys. Rev. C 74, 024606 (2006)

    ADS  Google Scholar 

  12. K. Washiyama, D. Lacroix, Phys. Rev. C 78, 024610 (2008)

    ADS  Google Scholar 

  13. L. Guo, C. Simenel, L. Shi, C. Yu, Phys. Lett. B 782, 401 (2018)

    ADS  Google Scholar 

  14. L. Guo, K. Godbey, A.S. Umar, Phys. Rev. C 98, 064607 (2018)

    ADS  Google Scholar 

  15. C. Simenel, R. Keser, A.S. Umar, V.E. Oberacker, Phys. Rev. C 88, 024617 (2013)

    ADS  Google Scholar 

  16. A.S. Umar, V.E. Oberacker, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 85, 017602 (2012)

    ADS  Google Scholar 

  17. V.E. Oberacker, A.S. Umar, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 85, 034609 (2012)

    ADS  Google Scholar 

  18. A.S. Umar, C. Simenel, K. Godbey, Phys. Rev. C 104, 034619 (2021)

    ADS  Google Scholar 

  19. C. Simenel, A.S. Umar, K. Godbey, D. Hinde, Phys. Rev. C 95, 031601 (2017)

    ADS  Google Scholar 

  20. Xiang-Xiang. Sun, Lu. Guo, Commun. Theor. Phys. 74, 097302 (2022)

    ADS  Google Scholar 

  21. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, H. Lenske, Eur. Phys. J. A 56, 19 (2020)

    ADS  Google Scholar 

  22. V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 80, 034606 (2009)

    ADS  Google Scholar 

  23. V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 80, 047603 (2009)

    ADS  Google Scholar 

  24. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, Eur. Phys. J. A 45, 125 (2010)

    ADS  Google Scholar 

  25. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Eur. Phys. J. A 47, 38 (2011)

    ADS  Google Scholar 

  26. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Phys. C 84, 064614 (2011)

    ADS  Google Scholar 

  27. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Rev. C 85, 024616 (2012)

    ADS  Google Scholar 

  28. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Rev. C 85, 069903(E) (2012)

    ADS  Google Scholar 

  29. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, H. Lenske, Phys. Lett. B 824, 136792 (2022)

    Google Scholar 

  30. F. Hofmann, H. Lenske, Phys. Rev. C 57, 2281 (1998)

    ADS  Google Scholar 

  31. H. Lenske, C. Fuchs, Phys. Lett. B 345, 355 (1995)

    ADS  Google Scholar 

  32. N. Tsoneva, H. Lenske, Phys. Rev. C 77, 024321 (2008)

    ADS  Google Scholar 

  33. N. Tsoneva, H. Lenske, Phys. Lett. B 695, 174 (2011)

    ADS  Google Scholar 

  34. G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, Nucl. Data Sheets 120, 1 (2014)

  35. G.G. Adamian, L.A. Malov, N.V. Antonenko, H. Lenske, K. Wang, S.G. Zhou, Eur. Phys. J. A 54, 170 (2018)

    ADS  Google Scholar 

  36. G.G. Adamian, N.V. Antonenko, H. Lenske, L.A. Malov, S.G. Zhou, Eur. Phys. J. A 57, 89 (2021)

    ADS  Google Scholar 

  37. G.G. Adamian, N.V. Antonenko, H. Lenske, S.V. Tolokonnikov, E.E. Saperstein, Phys. Rev. C 94, 054309 (2016)

    ADS  Google Scholar 

  38. G.G. Adamian et al., Int. J. Mod. Phys. E 5, 191 (1996)

    ADS  Google Scholar 

  39. A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967)

    Google Scholar 

  40. S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, D. Zawischa, Nucl. Phys. A 676, 49 (2000)

    ADS  Google Scholar 

  41. J. Speth, S. Krewald, F. Gümmer, P.-G. Reinhard, N. Lyutorovich, V. Tselyaev, Nucl. Phys. A 928, 17 (2014)

    ADS  Google Scholar 

  42. E. Krömer, S.V. Tolokonnikov, S.A. Fayans, D. Zawischa, Phys. Lett. B 363, 12 (1995)

    ADS  Google Scholar 

  43. S.V. Tolokonnikov, E.E. Saperstein, Phys. Atom. Nucl. 73, 1684 (2010)

    ADS  Google Scholar 

  44. J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972)

    ADS  Google Scholar 

  45. M. Warda, B. Nerlo-Pomorska, K. Pomorski, Nucl. Phys. A 635, 484 (1998)

    ADS  Google Scholar 

  46. J.J. Jiang et al., Nature 589, 527 (2021)

    ADS  Google Scholar 

  47. Le Hoang Chien, Dao T. Khoa, Do Cong Cuong, Nguyen Hoang Phuc, Phys. Rev. C 98, 064604 (2018)

    ADS  Google Scholar 

  48. V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, Phys. Part. Nucl. 47, 157 (2016)

    Google Scholar 

  49. C.L. Jiang, D. Santiago-Gonzalez, S. Almaraz-Calderon, K.E. Rehm, B.B. Back, K. Auranen et al., Phys. Rev. C 97, 012801(R) (2018)

    ADS  Google Scholar 

  50. E.F. Aguilera, P. Rosales, E. Martinez-Quiroz, G. Murillo, M. Fernandez, H. Berdejo et al., Phys. Rev. C 73, 064601 (2006)

    ADS  Google Scholar 

  51. G. Fruet, S. Courtin, M. Heine, D.G. Jenkins, P. Adsley, A. Brown et al., Phys. Rev. Lett. 124, 192701 (2020)

    ADS  Google Scholar 

  52. W.P. Tan et al., Phys. Rev. Lett. 124, 192702 (2020)

    ADS  Google Scholar 

  53. T. Spillane, F. Raiola, C. Rolfs, D. Schurmann, F. Strieder, S. Zeng, H.W. Becker, C. Bordeanu, L. Gialanella, M. Romano, J. Schweitzer, Phys. Rev. Lett. 98, 122501 (2007)

    ADS  Google Scholar 

  54. J. Thomas, Y.T. Chen, S. Hinds, K. Langanke, D. Meredith, M. Olson, C.A. Barnes, Phys. Rev. C 31, 1980 (1985)

    ADS  Google Scholar 

  55. G. Hulke, C. Rolfs, H.P. Trautvetter, Z. Physik A 297, 161 (1980)

    ADS  Google Scholar 

  56. S.-C. Wu, C.A. Barnes, Nucl. Phys. A 422, 373 (1984)

    ADS  Google Scholar 

  57. A. Kuronen, J. Keinonen, P. Tikkanen, Phys. Rev. C 35, 591 (1987)

    ADS  Google Scholar 

  58. C.L. Jiang, A.M. Stefanini, H. Esbensen, K.E. Rehm, S. Almaraz-Calderon, B.B. Back, L. Corradi, E. Fioretto, G. Montagnoli, F. Scarlassara, D. Montanari, S. Courtin, D. Bourgin, F. Haas, A. Goasduff, S. Szilner, T. Mijatovic, Phys. Rev. Lett. 113, 022701 (2014)

    ADS  Google Scholar 

  59. S. Gary, C. Volant, Phys. Rev. C 25, 1877 (1982)

    ADS  Google Scholar 

  60. A.M. Stefanini et al., Phys. Lett. B 679, 95 (2009)

    ADS  Google Scholar 

  61. G. Montagnoli, A.M. Stefanini, L. Corradi, S. Courtin, E. Fioretto, F. Haas, D. Lebhertz, F. Scarlassara, R. Silvestri, S. Szilner, Phys. Rev. C 82, 064609 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the DFG (Bonn, contract Le439/16) and RFBR (Moscow, 20-02-00176). G.G.A. and N.V.A. acknowledge the support from the Alexander von Humboldt-Stiftung (Bonn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Adamian.

Additional information

Communicated by Cedric Simenel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonenko, N.V., Adamian, G.G., Sargsyan, V.V. et al. Double-folding nucleus–nucleus interaction potential based on the self-consistent calculations. Eur. Phys. J. A 58, 211 (2022). https://doi.org/10.1140/epja/s10050-022-00865-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00865-w

Navigation