Skip to main content

Advertisement

Log in

Constraining properties of massive neutron star through R-mode

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Taking the GW190814 event as a clue, r-mode of 2.5\(M_{\odot }\) supermassive neutron star along with 1.4\(M_{\odot }\) canonical neutron star is investigated by using RNS code in the framework of rotating neutron star. Our conclusion further confirms that for the secondary star of GW190814, there exists a possibility that it is a rapid rotating supermassive neutron star in r-mode stable state. For super fast rotating neutron star with fixed spin frequency, the lower limit of its mass \(M_{min}\) can be constrained by the critical spin frequency under r-mode. As the \(M_{min}\) is EOS (equation of state) dependent, if the mass of neutron star with very high spin frequency can be observed in the future, the EOS of super-dense nuclear matter can be constrained by comparing the \(M_{min}\) of different EOSs. At last, the effect of crust-core transition densities on r-modes of neutron stars is explored and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility statement

This manuscript has no associated data or the data will not be deposited. [Authors’comment: The processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.]

References

  1. B.P. Abbott, et al., Astrophys. J. Lett. 896, L44 3 (2020)

  2. E.R. Most, L.J. Papenfort, L.R. Weih, L. Rezzolla, Mon. Not. R. Astron. Soc. 499, L82 (2020)

    Article  ADS  Google Scholar 

  3. N.B. Zhang, B.A. Li, Astrophys. J. 902, 38 (2020)

    Article  ADS  Google Scholar 

  4. V. Dexheimer, R.O. Gomes, T. Klahn, S. Han, M. Salinas, Phys. Rev. C 103, 025808 (2021)

    Article  ADS  Google Scholar 

  5. Z. Roupas, Astrophys. Space Sci. 366, 9 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. D.A. Godzieba, D. Radice, S. Bernuzzi, Astrophys. J. 908, 122 (2021)

    Article  ADS  Google Scholar 

  7. K. Huang, J. Hu, Y. Zhang, H. Shen, Astrophys. J. 904, 39 (2020)

    Article  ADS  Google Scholar 

  8. A. Sedrakian, F. Weber, J.J. Li, Phys. Rev. D 102, 041301 (2020)

    Article  ADS  Google Scholar 

  9. X. Zhou, A. Li, B.A. Li, Astrophys. J. 910, 62 (2021)

    Article  ADS  Google Scholar 

  10. E. Gaertig, K.D. Kokkotas, Phys. Rev. D 78, 064063 (2008)

    Article  ADS  Google Scholar 

  11. K.S. Thorne, A. Campolattaro, Astrophys. J. 149, 591 (1967)

    Article  ADS  Google Scholar 

  12. M. Leins, H. Nollert, M.H. Soffel, Phys. Rev. D 48, 3467 (1993)

    Article  ADS  Google Scholar 

  13. T.G. Cowling, Mon. Notices Royal Astron. Soc. 101, 367 (1941)

  14. U. Lee, T.E. Strohmayer, Astron. Astrophys. 311, 155 (1996)

    ADS  Google Scholar 

  15. N. Andersson, K.D. Kokkotas, Int. J. Mod. Phys. D 10, 381 (2001)

    Article  ADS  Google Scholar 

  16. D.H. Wen, W.G. Newton, B.A. Li, Phys. Rev. C 85, 025801 (2012)

    Article  ADS  Google Scholar 

  17. L. Lindblom, B.J. Owen, S.M. Morsink, Phys. Rev. Lett. 80, 4843 (1998)

    Article  ADS  Google Scholar 

  18. L. Bildsten, Astrophys. J. 501, L89 (1998)

    Article  ADS  Google Scholar 

  19. N. Andersson, K.D. Kokkotas, N. Stergioulas, Astrophys. J. 516, 307 (1999)

    Article  ADS  Google Scholar 

  20. N.K. Glendenning, Compact Stars (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  21. H. Komatsu, Y. Eriguchi, I. Hachisu, Mon. Not. R. Astron. Soc. 237, 355 (1989)

    Article  ADS  Google Scholar 

  22. G.B. Cook, S.L. Shapiro, S.A. Teukolsky, Astrophys. J. 422, 227 (1994)

    Article  ADS  Google Scholar 

  23. G.B. Cook, S.L. Shapiro, S.A. Teukolsky, Astrophys. J. 424, 823 (1994)

    Article  ADS  Google Scholar 

  24. N. Stergioulas, J.L. Friedman, Astrophys. J. 444, 306 (1995)

    Article  ADS  Google Scholar 

  25. N. Stergioulas, Liv. Rev. Relat. 1, 1 (1998)

    Article  MathSciNet  Google Scholar 

  26. L. Lindblom, B.J. Owen, G. Ushomirsky, Phys. Rev. D 62, 084030 (2000)

    Article  ADS  Google Scholar 

  27. M. Rieutord, Astrophys. J. 550, 443 (2001)

    Article  ADS  Google Scholar 

  28. P.S. Shternin, J. Phys. A Math. Theor. 41, 205501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Cutler, L. Lindblom, Astrophys. J. 314, 234 (1987)

    Article  ADS  Google Scholar 

  30. M. Alford, M. Braby, M. Paris, S. Reddy, Astrophys. J. 629, 969 (2005)

    Article  ADS  Google Scholar 

  31. A. Akmal, V.R. Pandharipande, Phys. Rev. C 56, 2261 (1997)

    Article  ADS  Google Scholar 

  32. L. Engvik, E. Osnes, M. Hjorth-Jensen, G. Bao, E. Ostgaard, Astrophys. J. 469, 794 (1996)

    Article  ADS  Google Scholar 

  33. H. Muther, M. Prakash, T.L. Ainsworth, Phys. Lett. B 199, 469 (1987)

    Article  ADS  Google Scholar 

  34. F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)

    Article  ADS  Google Scholar 

  35. R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988)

    Article  ADS  Google Scholar 

  36. Z.Y. Zhu, A. Li, J.N. Hu, H. Shen, Phys. Rev. C 99, 025804 (2019)

    Article  ADS  Google Scholar 

  37. B. Wei, Q. Zhao, Z.H. Wang, J. Geng, B.Y. Sun, Y.F. Niu, W.H. Long, Chin. Phys. C 44, 074107 (2020)

    Article  ADS  Google Scholar 

  38. T. Nikšić, D. Vretenar, P. Finelli, P. Ring, Phys. Rev. C 66, 024306 (2002)

    Article  ADS  Google Scholar 

  39. G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)

    Article  ADS  Google Scholar 

  40. W.H. Long, H. Sagawa, J. Meng, N.V. Giai, Eur. Phys. Lett. 82, 12001 (2008)

  41. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013)

    Article  ADS  Google Scholar 

  42. B.P. Abbott et al., Phys. Rev. Lett. 121, 161101 (2018)

    Article  ADS  Google Scholar 

  43. M.C. Miller et al., Astrophys. J. Lett. 887, L24 (2019)

    Article  ADS  Google Scholar 

  44. T.E. Riley et al., Astrophys. J. Lett. 918, L27 (2021)

    Article  ADS  Google Scholar 

  45. J.W.T. Hessels et al., Science 311, 1901 (2006)

    Article  ADS  Google Scholar 

  46. P. Kaaret et al., Astrophys. J. 657, L97 (2007)

    Article  ADS  Google Scholar 

  47. Z.W. Liu et al., Phys. Rev. C 97, 025801 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant No. 11975101) and Guangdong Natural Science Foundation (Grants No. 2020A151501820 and No. 2022A1515011552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Wen.

Additional information

Communicated by Jérôme Margueron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, S. & Wen, D. Constraining properties of massive neutron star through R-mode. Eur. Phys. J. A 58, 132 (2022). https://doi.org/10.1140/epja/s10050-022-00781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00781-z

Navigation