Skip to main content

Advertisement

Log in

Collision energy dependence of the critical end point from baryon number fluctuations in the Linear Sigma Model with quarks

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We show that the Linear Sigma Model with quarks produces an effective description of the QCD phase diagram and of the system’s equilibrium distribution properties that deviate from those of the Hadron Resonance Gas Model. The deviation is due to the inclusion of plasma screening properties, encoded in the contribution of the ring diagrams and thus to the introduction of a key feature of plasmas near phase transitions, namely, long-range correlations. After fixing the model parameters using input from LQCD for the crossover transition at vanishing chemical potential, we study the location of the Critical End Point in the effective QCD phase diagram. We use the model to study baryon number fluctuations and show that in heavy-ion collisions, the CEP can be located for collision energies \(\sqrt{s_{NN}}\sim 2\) GeV, namely, in the lowest NICA or within the HADES energy domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available on request.]

References

  1. Adam, J. and others (STAR), Phys. Rev. Lett. 126, 092301 (2021). https://doi.org/10.1103/PhysRevLett.126.092301. arXiv: 2001.02852 [nucl-ex]

  2. J. Adamczewski-Musch, and others (HADES). Phys. Rev. C 102, 024914 (2020). https://doi.org/10.1103/PhysRevC.102.024914. arXiv:2002.08701 [nucl-ex]

  3. V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov, Nucl. Phys. A 967, 884 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.031

    Article  ADS  Google Scholar 

  4. P. Senger, J. Phys. Conf. Ser. 798, 012062 (2017). https://doi.org/10.1088/1742-6596/798/1/012062

    Article  Google Scholar 

  5. S. Blacker, N.-U.F. Bastian, A. Bauswein, D.B. Blaschke, T. Fischer, M. Oertel, T. Soultanis, S. Typel, Phys. Rev. D 102, 123023 (2020). https://doi.org/10.1103/PhysRevD.102.123023. arXiv:2006.03789 [astro-ph.HE]

    Article  ADS  Google Scholar 

  6. E. R. Most, L. Jens Papenfort, V. Dexheimer, M. Hanauske, H. Stoecker, L. Rezzolla, Eur. Phys. J. A, 56, 59 (2020). https://doi.org/10.1140/epja/s10050-020-00073-4. arXiv:1910.13893 [astro-ph.HE]

  7. S. Borsanyi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pasztor, C. Ratti, K.K. Szabo, Phys. Rev. Lett. 125, 052001 (2020). https://doi.org/10.1103/PhysRevLett.125.052001. arXiv:2002.02821 [hep-lat]

    Article  ADS  Google Scholar 

  8. A. Bazavov et al., HotQCD. Phys. Lett. B 795, 15 (2019). https://doi.org/10.1016/j.physletb.2019.05.013. arXiv:1812.08235 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120. arXiv:hep-lat/0611014 [hep-lat]

    Article  ADS  Google Scholar 

  10. Roessner, Simon and Ratti, Claudia and Weise, W., Phys. Rev. D 75, 034007 (2007). https://doi.org/10.1103/PhysRevD.75.034007. arXiv:hep-ph/0609281

  11. A. Ayala, L.A. Hernández, M. Loewe, J.C. Rojas, R. Zamora, Eur. Phys. J. A 56, 71 (2020). https://doi.org/10.1140/epja/s10050-020-00086-z. arXiv:1904.11905 [hep-ph]

    Article  ADS  Google Scholar 

  12. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989). https://doi.org/10.1016/0375-9474(89)90002-X

    Article  Google Scholar 

  13. A. Ayala, S. Hernandez-Ortiz, L. A. Hernandez, Rev. Mex. Fis. 64, 302 (2018). https://doi.org/10.31349/RevMexFis.64.302. arXiv:1710.09007 [hep-ph]

  14. F. Gao, Y.-X. Liu, Phys. Rev. D 94, 076009 (2016). https://doi.org/10.1103/PhysRevD.94.076009. arXiv:1607.01675 [hep-ph]

    Article  ADS  Google Scholar 

  15. F. Gao, J.M. Pawlowski (2020). arXiv:2010.13705 [hep-ph]

  16. H.-T. Ding, F. Karsch, S. Mukherjee, Int. J. Mod. Phys. E 24, 1530007 (2015). https://doi.org/10.1142/S0218301315300076. arXiv:1504.05274 [hep-lat]

    Article  ADS  Google Scholar 

  17. Z. Fodor, S.D. Katz, JHEP 04, 050 (2004). https://doi.org/10.1088/1126-6708/2004/04/050. arXiv:hep-lat/0402006

    Article  ADS  Google Scholar 

  18. S. Sharma ( Bielefeld-BNL-CCNU), Nucl. Phys. A 967, 728 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.008. arXiv:1704.05969 [hep-lat]

  19. T. Mendenhall, Z.-W. Lin, Phys. Rev. C 103, 024907 (2021). https://doi.org/10.1103/PhysRevC.103.024907. arXiv:2012.13825 [nucl-th]

    Article  ADS  Google Scholar 

  20. F. Karsch, J. Phys. Conf. Ser. 779, 012015 (2017). https://doi.org/10.1088/1742-6596/779/1/012015. arXiv:1611.01973 [hep-lat]

    Article  Google Scholar 

  21. P. Braun-Munzinger, K. Redlich, J. Stachel (2003). arXiv:nucl-th/0304013

  22. M. Asakawa, M. Kitazawa, Prog. Part. Nucl. Phys. 90, 299 (2016). https://doi.org/10.1016/j.ppnp.2016.04.002. arXiv:1512.05038 [nucl-th]

    Article  ADS  Google Scholar 

  23. J. Adam et al., STAR. Phys. Rev. C 102, 024903 (2020). https://doi.org/10.1103/PhysRevC.102.024903. arXiv:2001.06419 [nucl-ex]

    Article  ADS  Google Scholar 

  24. M. Abdallah et al. (STAR) (2021). arXiv:2101.12413 [nucl-ex]

  25. M. Abdallah et al. (STAR), (2021). arxiv:2105.14698

  26. Y. Hatta, T. Ikeda, Phys. Rev. D 67, 014028 (2003). https://doi.org/10.1103/PhysRevD.67.014028. arXiv:hep-ph/0210284

    Article  ADS  Google Scholar 

  27. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999). https://doi.org/10.1103/PhysRevD.60.114028. arXiv:hep-ph/9903292

    Article  ADS  Google Scholar 

  28. A. Bzdak, V. Koch, N. Strodthoff, Phys. Rev. C 95, 054906 (2017). https://doi.org/10.1103/PhysRevC.95.054906. arXiv:1607.07375 [nucl-th]

    Article  ADS  Google Scholar 

  29. A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu, Phys. Rept. 853, 1 (2020). https://doi.org/10.1016/j.physrep.2020.01.005. arXiv:1906.00936 [nucl-th]

    Article  ADS  Google Scholar 

  30. C. Athanasiou, K. Rajagopal, M. Stephanov, Phys. Rev. D 82, 074008 (2010). https://doi.org/10.1103/PhysRevD.82.074008. arXiv:1006.4636 [hep-ph]

    Article  ADS  Google Scholar 

  31. D. Mroczek, A.R. Nava Acuna, J. Noronha-Hostler, P. Parotto, C. Ratti, M.A. Stephanov, Phys. Rev. C 103, 034901 (2021). https://doi.org/10.1103/PhysRevC.103.034901. arXiv:2008.04022 [nucl-th]

  32. P. Isserstedt, M. Buballa, C.S. Fischer, P.J. Gunkel, Phys. Rev. D 100, 074011 (2019). arXiv:1906.11644 [hep-ph]

  33. W.J. Fu, X. Luo, J.M. Pawlowski, F. Rennecke, R. Wen, S. Yin, Phys. Rev. D 104, 094047 (2021). https://doi.org/10.1103/PhysRevD.104.094047. arXiv:2101.06035 [hep-ph]

  34. J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, R. Rougemont, Phys. Rev. D 104, 034002 (2021). https://doi.org/10.1103/PhysRevD.104.034002. arXiv:2102.12042 [nucl-th]

  35. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). https://doi.org/10.1103/PhysRevLett.102.032301. arXiv:0809.3450 [hep-ph]

    Article  ADS  Google Scholar 

  36. M.A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011). https://doi.org/10.1103/PhysRevLett.107.052301. arXiv:1104.1627 [hep-ph]

    Article  ADS  Google Scholar 

  37. A. Ayala, J. D. Castaño Yepes, J. J. Cobos-Martínez, S. Hernández-Ortiz, A. Julia Mizher, A. Raya, Int. J. Mod. Phys. A 31, 1650199 (2016). https://doi.org/10.1142/S0217751X16501992. arXiv:1510.08548 [hep-ph]

  38. K. Kashiwa, H. Kouno, M. Matsuzaki, M. Yahiro, Phys. Lett. B 662, 26 (2008). https://doi.org/10.1016/j.physletb.2008.01.075. arXiv:0710.2180 [hep-ph]

  39. H. Mao, J. Jin, M. Huang, J. Phys. G 37, 035001 (2010). https://doi.org/10.1088/0954-3899/37/3/035001. arXiv:0906.1324 [hep-ph]

  40. V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C 82, 015206 (2010). https://doi.org/10.1103/PhysRevC.82.015206. arXiv:1004.2665 [hep-ph]

    Article  ADS  Google Scholar 

  41. V. Skokov, B. Friman, K. Redlich, Phys. Rev. C 83, 054904 (2011). https://doi.org/10.1103/PhysRevC.83.054904. arXiv:1008.4570 [hep-ph]

    Article  ADS  Google Scholar 

  42. M. Gell-Mann, M. Levy, C. Nuovo, 16, 705 (1960). https://doi.org/10.1007/BF02859738

  43. N. Petropoulos, J. Phys. G 25, 2225 (1999). https://doi.org/10.1088/0954-3899/25/11/305

    Article  ADS  Google Scholar 

  44. E.S. Bowman, J.I. Kapusta, Phys. Rev. C 79, 015202 (2009). https://doi.org/10.1103/PhysRevC.79.015202. arXiv:0810.0042 [nucl-th]

  45. O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, Phys. Rev. C 64, 045202 (2001). https://doi.org/10.1103/PhysRevC.64.045202. arXiv:nucl-th/0007030

  46. A. Ayala, L.A. Hernández, M. Loewe, C. Villavicencio, Eur. Phys. J. A 57, 234 (2021). https://doi.org/10.1140/epja/s10050-021-00534-4. arXiv:2104.05854 [hep-ph]

    Article  ADS  Google Scholar 

  47. J.N. Guenther, Eur. Phys. J. A 57, 136 (2021). https://doi.org/10.1140/epja/s10050-021-00354-6. arXiv:2010.15503 [hep-lat]

    Article  ADS  Google Scholar 

  48. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006). https://doi.org/10.1103/PhysRevC.73.034905. arXiv:hep-ph/0511094

    Article  ADS  Google Scholar 

  49. X. Luo, EPJ Web Conf. 141, 04001 (2017). https://doi.org/10.1051/epjconf/201714104001

  50. J. Xu, S. Yu, F. Liu, X. Luo, Phys. Rev. C 94, 024901 (2016). https://doi.org/10.1103/PhysRevC.94.024901. arXiv:1606.03900 [nucl-ex]

    Article  ADS  Google Scholar 

  51. S. He, X. Luo, Y. Nara, S. Esumi, N. Xu, Phys. Lett. B 762, 296 (2016). https://doi.org/10.1016/j.physletb.2016.09.053. arXiv:1607.06376 [nucl-ex]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support for this work was received in part by UNAM-DGAPA-PAPIIT grant number IG100322 and by Consejo Nacional de Ciencia y Tecnología grant numbers A1-S-7655 and A1-S-16215. S. H.-O. acknowledges support from the U.S. DOE under Grant No. DE-FG02-00ER41132 and the Simons Foundation under the Multifarious Minds Program Grant No. 557037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Tejeda-Yeomans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, A., Almeida Zamora, B., Cobos-Martínez, J.J. et al. Collision energy dependence of the critical end point from baryon number fluctuations in the Linear Sigma Model with quarks. Eur. Phys. J. A 58, 87 (2022). https://doi.org/10.1140/epja/s10050-022-00732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00732-8

Navigation