Skip to main content
Log in

Insignificance of the anomalous magnetic moment of the quarks in presence of chiral imbalance

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We incorporate the anomalous magnetic moment (AMM) of quarks in the framework of PNJL model to study hot and dense magnetised matter with chiral imbalance. For this purpose, the eigen energy solution of the Dirac equation is obtained in presence of constant background magnetic field and chiral chemical potential (CCP) along with the minimal anomalous magnetic moment interaction of the fermion. Although there is a marginal enhancement in the IMC behaviour of the quark condensate due to the combined effects of AMM and CCP, we find that the overall behaviour of the Polyakov loop and the chiral charge density is dominated by the chiral chemical potential. It is further shown that the AMM effects in presence of CCP remains insignificant even after consideration of thermo-magnetically modified moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical work and thus, it does not have any associated data.]

References

  1. D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee, eds., Strongly Interacting Matter in Magnetic Fields, Lecture Notes in Physics, Springer Berlin, Heidelberg, Vol. 871 (2013). https://doi.org/10.1007/978-3-642-37305-3

  2. V.A. Miransky, I.A. Shovkovy, Phys. Rep. 576, 1 (2015). https://doi.org/10.1016/j.physrep.2015.02.003. arXiv:1503.00732 [hep-ph]

  3. J.O. Andersen, W.R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016). https://doi.org/10.1103/RevModPhys.88.025001. arXiv:1411.7176 [hep-ph]

  4. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298.arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  5. V. Skokov, AYu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570.arXiv:0907.1396 [nucl-th]

    Article  ADS  Google Scholar 

  6. K. Tuchin, Phys. Rev. C 88, 024911 (2013). https://doi.org/10.1103/PhysRevC.88.024911.arXiv:1305.5806 [hep-ph]

    Article  ADS  Google Scholar 

  7. K. Tuchin, Phys. Rev. C 93, 014905 (2016). https://doi.org/10.1103/PhysRevC.93.014905.arXiv:1508.06925 [hep-ph]

    Article  ADS  Google Scholar 

  8. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013). https://doi.org/10.1155/2013/490495.arXiv:1301.0099 [hep-ph]

    Article  MathSciNet  Google Scholar 

  9. U. Gursoy, D. Kharzeev, K. Rajagopal, Phys. Rev. C 89, 054905 (2014). https://doi.org/10.1103/PhysRevC.89.054905.arXiv:1401.3805 [hep-ph]

    Article  ADS  Google Scholar 

  10. R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992). https://doi.org/10.1086/186413

    Article  ADS  Google Scholar 

  11. C. Thompson, R.C. Duncan, Astrophys. J. 408, 194 (1993). https://doi.org/10.1086/172580

    Article  ADS  Google Scholar 

  12. T. Vachaspati, Phys. Lett. B 265, 258 (1991). https://doi.org/10.1016/0370-2693(91)90051-Q

    Article  ADS  Google Scholar 

  13. L. Campanelli, Phys. Rev. Lett. 111, 061301 (2013). https://doi.org/10.1103/PhysRevLett.111.061301.arXiv:1304.6534 [astro-ph.CO]

    Article  ADS  Google Scholar 

  14. P. de Forcrand, O. Philipsen, JHEP 01, 077 (2007). https://doi.org/10.1088/1126-6708/2007/01/077.arXiv:hep-lat/0607017

    Article  Google Scholar 

  15. Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 643, 46 (2006). https://doi.org/10.1016/j.physletb.2006.10.021.arXiv:hep-lat/0609068

    Article  ADS  Google Scholar 

  16. Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo, JHEP 06, 088 (2009). https://doi.org/10.1088/1126-6708/2009/06/088.arXiv:0903.4155 [hep-lat]

    Article  ADS  Google Scholar 

  17. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009). https://doi.org/10.1103/PhysRevD.80.014504.arXiv:0903.4379 [hep-lat]

    Article  ADS  Google Scholar 

  18. M. Cheng et al., Phys. Rev. D 77, 014511 (2008). https://doi.org/10.1103/PhysRevD.77.014511.arXiv:0710.0354 [hep-lat]

    Article  ADS  Google Scholar 

  19. S. Muroya, A. Nakamura, C. Nonaka, T. Takaishi, Prog. Theor. Phys. 110, 615 (2003). https://doi.org/10.1143/PTP.110.615.arXiv:hep-lat/0306031

    Article  ADS  Google Scholar 

  20. K. Splittorff, J.J.M. Verbaarschot, Phys. Rev. Lett. 98, 031601 (2007). https://doi.org/10.1103/PhysRevLett.98.031601.arXiv:hep-lat/0609076

    Article  ADS  Google Scholar 

  21. K. Fukushima, Y. Hidaka, Phys. Rev. D 75, 036002 (2007). https://doi.org/10.1103/PhysRevD.75.036002.arXiv:hep-ph/0610323

    Article  ADS  Google Scholar 

  22. A. Bazavov et al., Phys. Rev. D 95, 054504 (2017). https://doi.org/10.1103/PhysRevD.95.054504.arXiv:1701.04325 [hep-lat]

    Article  ADS  Google Scholar 

  23. S. Sharma, PoS LATTICE2018, 009 (2019). https://doi.org/10.22323/1.334.0009. arXiv:1901.07190 [hep-lat]

  24. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961) [141 (1961)]. https://doi.org/10.1103/PhysRev.124.246

  25. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961) [127 (1961)]. https://doi.org/10.1103/PhysRev.122.345

  26. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992). https://doi.org/10.1103/RevModPhys.64.649

    Article  ADS  MathSciNet  Google Scholar 

  27. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991). https://doi.org/10.1016/0146-6410(91)90005-9

    Article  ADS  Google Scholar 

  28. M. Buballa, Phys. Rep. 407, 205 (2005). https://doi.org/10.1016/j.physrep.2004.11.004.arXiv:hep-ph/0402234

    Article  ADS  Google Scholar 

  29. M.K. Volkov, A.E. Radzhabov, Phys. Usp. 49, 551 (2006). https://doi.org/10.1070/PU2006v049n06ABEH005905.arXiv:hep-ph/0508263

    Article  ADS  Google Scholar 

  30. L.D. McLerran, B. Svetitsky, Phys. Rev. D 24, 450 (1981). https://doi.org/10.1103/PhysRevD.24.450.

    Article  ADS  Google Scholar 

  31. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006). https://doi.org/10.1103/PhysRevD.73.014019.arXiv:hep-ph/0506234

    Article  ADS  Google Scholar 

  32. C. Ratti, S. Roessner, M. Thaler, W. Weise, Eur. Phys. J. C 49, 213 (2007). https://doi.org/10.1140/epjc/s10052-006-0065-x.arXiv:hep-ph/0609218

    Article  ADS  Google Scholar 

  33. M.A. Shifman, Sov. Phys. Usp. 32, 289 (1989). https://doi.org/10.1016/0370-1573(91)90020-M.

    Article  ADS  Google Scholar 

  34. A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Y.S. Tyupkin, Phys. Lett. B 59, 85 (1975). https://doi.org/10.1016/0370-2693(75)90163-X

    Article  ADS  MathSciNet  Google Scholar 

  35. G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976). https://doi.org/10.1103/PhysRevLett.37.8

    Article  ADS  Google Scholar 

  36. G. ’t Hooft, Phys. Rev. D 14, 3432 (1976b). https://doi.org/10.1103/PhysRevD.14.3432 [Erratum: Phys.Rev.D 18, 2199 (1978)]

  37. T. Schäfer, E.V. Shuryak, Rev. Mod. Phys. 70, 323 (1998). https://doi.org/10.1103/RevModPhys.70.323.arXiv:hep-ph/9610451

    Article  ADS  Google Scholar 

  38. N.S. Manton, Phys. Rev. D 28, 2019 (1983). https://doi.org/10.1103/PhysRevD.28.2019

    Article  ADS  MathSciNet  Google Scholar 

  39. F.R. Klinkhamer, N.S. Manton, Phys. Rev. D 30, 2212 (1984). https://doi.org/10.1103/PhysRevD.30.2212

    Article  ADS  Google Scholar 

  40. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985). https://doi.org/10.1016/0370-2693(85)91028-7

    Article  ADS  Google Scholar 

  41. P.B. Arnold, L.D. McLerran, Phys. Rev. D 36, 581 (1987). https://doi.org/10.1103/PhysRevD.36.581

    Article  ADS  Google Scholar 

  42. S.Y. Khlebnikov, M.E. Shaposhnikov, Nucl. Phys. B 308, 885 (1988). https://doi.org/10.1016/0550-3213(88)90133-2

    Article  ADS  Google Scholar 

  43. P.B. Arnold, L.D. McLerran, Phys. Rev. D 37, 1020 (1988). https://doi.org/10.1103/PhysRevD.37.1020

    Article  ADS  Google Scholar 

  44. L.D. McLerran, E. Mottola, M.E. Shaposhnikov, Phys. Rev. D 43, 2027 (1991). https://doi.org/10.1103/PhysRevD.43.2027

    Article  ADS  Google Scholar 

  45. G.D. Moore, M. Tassler, JHEP 02, 105 (2011). https://doi.org/10.1007/JHEP02(2011)105.arXiv:1011.1167 [hep-ph]

    Article  ADS  Google Scholar 

  46. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008). https://doi.org/10.1103/PhysRevD.78.074033.arXiv:0808.3382 [hep-ph]

    Article  ADS  Google Scholar 

  47. D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80, 034028 (2009). https://doi.org/10.1103/PhysRevD.80.034028.arXiv:0907.5007 [hep-ph]

    Article  ADS  Google Scholar 

  48. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, JHEP 02, 044 (2012). https://doi.org/10.1007/JHEP02(2012)044.arXiv:1111.4956 [hep-lat]

    Article  ADS  Google Scholar 

  49. A. Vilenkin, Phys. Rev. D 20, 1807 (1979). https://doi.org/10.1103/PhysRevD.20.1807

    Article  ADS  MathSciNet  Google Scholar 

  50. A. Vilenkin, Phys. Rev. D 22, 3080 (1980). https://doi.org/10.1103/PhysRevD.22.3080

    Article  ADS  Google Scholar 

  51. D.T. Son, P. Surowka, Phys. Rev. Lett. 103, 191601 (2009). https://doi.org/10.1103/PhysRevLett.103.191601.arXiv:0906.5044 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  52. Y. Akamatsu, N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013). https://doi.org/10.1103/PhysRevLett.111.052002.arXiv:1302.2125 [nucl-th]

    Article  ADS  Google Scholar 

  53. S. Carignano, C. Manuel, Phys. Rev. D 99, 096022 (2019). https://doi.org/10.1103/PhysRevD.99.096022.arXiv:1811.06394 [hep-ph]

    Article  ADS  Google Scholar 

  54. S. Carignano, C. Manuel, Phys. Rev. D 103, 116002 (2021). https://doi.org/10.1103/PhysRevD.103.116002.arXiv:2103.02491 [hep-ph]

    Article  ADS  Google Scholar 

  55. S. Carignano, M. Buballa, Phys. Rev. D 101, 014026 (2020). https://doi.org/10.1103/PhysRevD.101.014026.arXiv:1910.03604 [hep-ph]

    Article  ADS  Google Scholar 

  56. D.E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014). https://doi.org/10.1016/j.ppnp.2014.01.002.arXiv:1312.3348 [hep-ph]

    Article  ADS  Google Scholar 

  57. D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.01.001.arXiv:1511.04050 [hep-ph]

    Article  ADS  Google Scholar 

  58. X.-G. Huang, Rept. Prog. Phys. 79, 076302 (2016). https://doi.org/10.1088/0034-4885/79/7/076302.arXiv:1509.04073 [nucl-th]

    Article  ADS  Google Scholar 

  59. K. Landsteiner, Acta Phys. Polon. B 47, 2617 (2016). https://doi.org/10.5506/APhysPolB.47.2617.arXiv:1610.04413 [hep-th]

    Article  ADS  Google Scholar 

  60. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, Low Temp. Phys. 44, 487 (2018). https://doi.org/10.1063/1.5037551.arXiv:1712.08947 [cond-mat.mes-hall]

    Article  ADS  Google Scholar 

  61. M. Joyce, M.E. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997). https://doi.org/10.1103/PhysRevLett.79.1193.arXiv:astro-ph/9703005

    Article  ADS  Google Scholar 

  62. H. Tashiro, T. Vachaspati, A. Vilenkin, Phys. Rev. D 86, 105033 (2012). https://doi.org/10.1103/PhysRevD.86.105033.arXiv:1206.5549 [astro-ph.CO]

    Article  ADS  Google Scholar 

  63. M. Ruggieri, G.X. Peng, Phys. Rev. D 93, 094021 (2016). https://doi.org/10.1103/PhysRevD.93.094021.arXiv:1602.08994 [hep-ph]

    Article  ADS  Google Scholar 

  64. M. Ruggieri, G.X. Peng, M. Chernodub, Phys. Rev. D 94, 054011 (2016). https://doi.org/10.1103/PhysRevD.94.054011.arXiv:1606.03287 [hep-ph]

    Article  ADS  Google Scholar 

  65. M. Ruggieri, M.N. Chernodub, Z.-Y. Lu, Phys. Rev. D 102, 014031 (2020). https://doi.org/10.1103/PhysRevD.102.014031.arXiv:2004.09393 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  66. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031 (2010). https://doi.org/10.1103/PhysRevD.81.114031.arXiv:1003.0047 [hep-ph]

    Article  ADS  Google Scholar 

  67. L. Yu, J. Van Doorsselaere, M. Huang, Phys. Rev. D 91, 074011 (2015). https://doi.org/10.1103/PhysRevD.91.074011.arXiv:1411.7552 [hep-ph]

    Article  ADS  Google Scholar 

  68. L. Yu, H. Liu, M. Huang, Phys. Rev. D 94, 014026 (2016). https://doi.org/10.1103/PhysRevD.94.014026.arXiv:1511.03073 [hep-ph]

    Article  ADS  Google Scholar 

  69. J. Chao, P. Chu, M. Huang, Phys. Rev. D 88, 054009 (2013). https://doi.org/10.1103/PhysRevD.88.054009.arXiv:1305.1100 [hep-ph]

    Article  ADS  Google Scholar 

  70. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994). https://doi.org/10.1103/PhysRevLett.76.1005. https://doi.org/10.1103/PhysRevLett.73.3499. arXiv:hep-ph/9405262 [Erratum: Phys. Rev. Lett. 76, 1005 (1996)]

  71. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996). https://doi.org/10.1016/0550-3213(96)00021-1.arXiv:hep-ph/9509320

    Article  ADS  Google Scholar 

  72. S. Fayazbakhsh, S. Sadeghian, N. Sadooghi, Phys. Rev. D 86, 085042 (2012). https://doi.org/10.1103/PhysRevD.86.085042.arXiv:1206.6051 [hep-ph]

    Article  ADS  Google Scholar 

  73. S. Mao, Phys. Lett. B 758, 195 (2016). https://doi.org/10.1016/j.physletb.2016.05.018.arXiv:1602.06503 [hep-ph]

    Article  ADS  Google Scholar 

  74. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 90, 105030 (2014). https://doi.org/10.1103/PhysRevD.90.105030.arXiv:1408.5457 [hep-ph]

    Article  ADS  Google Scholar 

  75. R.L.S. Farias, W.R. Tavares, R.M. Nunes, S.S. Avancini, (2021). arXiv:2109.11112 [hep-ph]

  76. N. Chaudhuri, S. Ghosh, S. Sarkar, P. Roy, Phys. Rev. D 99, 116025 (2019). https://doi.org/10.1103/PhysRevD.99.116025.arXiv:1907.03990 [nucl-th]

    Article  ADS  Google Scholar 

  77. N. Chaudhuri, S. Ghosh, S. Sarkar, P. Roy, Eur. Phys. J. A 56, 213 (2020). https://doi.org/10.1140/epja/s10050-020-00222-9.arXiv:2003.05692 [nucl-th]

    Article  ADS  Google Scholar 

  78. S. Ghosh, N. Chaudhuri, P. Roy, S. Sarkar, Phys. Rev. D 103, 116008 (2021). https://doi.org/10.1103/PhysRevD.103.116008.arXiv:2104.14112 [hep-ph]

    Article  ADS  Google Scholar 

  79. S. Ghosh, N. Chaudhuri, S. Sarkar, P. Roy, Phys. Rev. D 101, 096002 (2020). https://doi.org/10.1103/PhysRevD.101.096002.arXiv:2004.09203 [nucl-th]

    Article  ADS  Google Scholar 

  80. N. Chaudhuri, S. Ghosh, S. Sarkar, P. Roy, Phys. Rev. D 103, 096021 (2021). https://doi.org/10.1103/PhysRevD.103.096021.arXiv:2104.11425 [hep-ph]

    Article  ADS  Google Scholar 

  81. R.F. O’Connell, Phys. Rev. 176, 1433 (1968). https://doi.org/10.1103/PhysRev.176.1433

    Article  ADS  Google Scholar 

  82. X.-L. Sheng, D.H. Rischke, D. Vasak, Q. Wang, Eur. Phys. J. A 54, 21 (2018). https://doi.org/10.1140/epja/i2018-12414-9.arXiv:1707.01388 [hep-ph]

    Article  ADS  Google Scholar 

  83. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995)

    Google Scholar 

  84. K. Xu, J. Chao, M. Huang, Phys. Rev. D 103, 076015 (2021). https://doi.org/10.1103/PhysRevD.103.076015.arXiv:2007.13122 [hep-ph]

    Article  ADS  Google Scholar 

  85. S. Roessner, C. Ratti, W. Weise, Phys. Rev. D 75, 034007 (2007). https://doi.org/10.1103/PhysRevD.75.034007.arXiv:hep-ph/0609281

    Article  ADS  Google Scholar 

  86. P.J. Bicudo, J.F. Ribeiro, R. Fernandes, Phys. Rev. C 59, 1107 (1999). https://doi.org/10.1103/PhysRevC.59.1107.arXiv:hep-ph/9806243

    Article  ADS  Google Scholar 

  87. I.A. Shovkovy, Lect. Notes Phys. 871, 13 (2013). https://doi.org/10.1007/978-3-642-37305-3_2.arXiv:1207.5081 [hep-ph]

    Article  ADS  Google Scholar 

  88. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 563, 361 (1999). https://doi.org/10.1016/S0550-3213(99)00573-8.arXiv:hep-ph/9908320 [hep-ph]

    Article  ADS  Google Scholar 

  89. S. Ghosh, A. Mukherjee, N. Chaudhuri, P. Roy, S. Sarkar, Phys. Rev. D 101, 056023 (2020). https://doi.org/10.1103/PhysRevD.101.056023.arXiv:2003.02024 [hep-ph]

    Article  ADS  Google Scholar 

  90. D.E. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee, Lect. Notes Phys. 871, 1 (2013). https://doi.org/10.1007/978-3-642-37305-3_1.arXiv:1211.6245 [hep-ph]

    Article  ADS  Google Scholar 

  91. S.S. Avancini, R.L. Farias, W.R. Tavares, Phys. Rev. D 99, 056009 (2019). https://doi.org/10.1103/PhysRevD.99.056009.arXiv:1812.00945 [hep-ph]

    Article  ADS  Google Scholar 

  92. R. Gatto, M. Ruggieri, Phys. Rev. D 82, 054027 (2010). https://doi.org/10.1103/PhysRevD.82.054027.arXiv:1007.0790 [hep-ph]

    Article  ADS  Google Scholar 

  93. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, Course of Theoretical Physics, vol. 5 (Butterworth-Heinemann, Oxford, 1980)

    Google Scholar 

  94. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 83, 025026 (2011). https://doi.org/10.1103/PhysRevD.83.025026.arXiv:1009.6125 [hep-ph]

    Article  ADS  Google Scholar 

  95. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 82, 045010 (2010). https://doi.org/10.1103/PhysRevD.82.045010.arXiv:1005.5022 [hep-ph]

    Article  ADS  Google Scholar 

  96. D. Ebert, A.S. Vshivtsev, (1998). arXiv:hep-ph/9806421

  97. T. Inagaki, D. Kimura, T. Murata, Finite density QCD, in Proceedings, International Workshop, Nara, Japan, July 10–12, 2003. Prog. Theor. Phys. Suppl. 153, 321 (2004). https://doi.org/10.1143/PTPS.153.321. arXiv:hep-ph/0404219

  98. J.L. Noronha, I.A. Shovkovy, Phys. Rev. D 76, 105030 (2007). https://doi.org/10.1103/PhysRevD.76.105030. https://doi.org/10.1103/PhysRevD.86.049901. arXiv:0708.0307 [hep-ph] [Erratum: Phys. Rev.D86,049901(2012)]

  99. K. Fukushima, H.J. Warringa, Phys. Rev. Lett. 100, 032007 (2008). https://doi.org/10.1103/PhysRevLett.100.032007.arXiv:0707.3785 [hep-ph]

    Article  ADS  Google Scholar 

  100. R. Aguirre, Phys. Rev. D 102, 096025 (2020). https://doi.org/10.1103/PhysRevD.102.096025.arXiv:2009.01828 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  101. J. Mei, S. Mao, (2020). arXiv:2008.12123 [hep-ph]

  102. A. Mukherjee, S. Ghosh, M. Mandal, S. Sarkar, P. Roy, Phys. Rev. D 98, 056024 (2018). https://doi.org/10.1103/PhysRevD.98.056024.arXiv:1809.07028 [hep-ph]

    Article  ADS  Google Scholar 

  103. L. Yu, H. Liu, M. Huang, Phys. Rev. D 90, 074009 (2014). https://doi.org/10.1103/PhysRevD.90.074009.arXiv:1404.6969 [hep-ph]

    Article  ADS  Google Scholar 

  104. N.Y. Astrakhantsev, V.V. Braguta, A.Y. Kotov, D.D. Kuznedelev, A.A. Nikolaev, Eur. Phys. J. A 57, 15 (2021). https://doi.org/10.1140/epja/s10050-020-00326-2.arXiv:1902.09325 [hep-lat]

    Article  ADS  Google Scholar 

  105. V.V. Braguta, E.M. Ilgenfritz, A.Y. Kotov, B. Petersson, S.A. Skinderev, Phys. Rev. D 93, 034509 (2016). https://doi.org/10.1103/PhysRevD.93.034509.arXiv:1512.05873 [hep-lat]

    Article  ADS  Google Scholar 

  106. V.V. Braguta, V.A. Goy, E.M. Ilgenfritz, A.Y. Kotov, A.V. Molochkov, M. Muller-Preussker, B. Petersson, JHEP 06, 094 (2015). https://doi.org/10.1007/JHEP06(2015)094.arXiv:1503.06670 [hep-lat]

    Article  ADS  Google Scholar 

  107. S.-S. Xu, Z.-F. Cui, B. Wang, Y.-M. Shi, Y.-C. Yang, H.-S. Zong, Phys. Rev. D 91, 056003 (2015). https://doi.org/10.1103/PhysRevD.91.056003.arXiv:1505.00316 [hep-ph]

    Article  ADS  Google Scholar 

  108. B. Wang, Y.-L. Wang, Z.-F. Cui, H.-S. Zong, Phys. Rev. D 91, 034017 (2015). https://doi.org/10.1103/PhysRevD.91.034017

    Article  ADS  Google Scholar 

  109. Z.-F. Cui, I.C. Cloet, Y. Lu, C.D. Roberts, S.M. Schmidt, S.-S. Xu, H.-S. Zong, Phys. Rev. D 94, 071503 (2016). https://doi.org/10.1103/PhysRevD.94.071503.arXiv:1604.08454 [nucl-th]

    Article  ADS  Google Scholar 

  110. C. Shi, X.-T. He, W.-B. Jia, Q.-W. Wang, S.-S. Xu, H.-S. Zong, JHEP 06, 122 (2020). https://doi.org/10.1007/JHEP06(2020)122arXiv:2004.09918 [hep-ph]

    Article  ADS  Google Scholar 

  111. M.N. Chernodub, A.S. Nedelin, Phys. Rev. D 83, 105008 (2011). https://doi.org/10.1103/PhysRevD.83.105008.arXiv:1102.0188 [hep-ph]

    Article  ADS  Google Scholar 

  112. V.V. Braguta, A.Y. Kotov, Phys. Rev. D 93, 105025 (2016). https://doi.org/10.1103/PhysRevD.93.105025.arXiv:1601.04957 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  113. R.L.S. Farias, D.C. Duarte, Ga. Krein, R.O. Ramos, Phys. Rev. D 94, 074011 (2016). https://doi.org/10.1103/PhysRevD.94.074011.arXiv:1604.04518 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Mukherjee.

Additional information

Communicated by R. Alkofer.

Appendix A: Determination of energy eigenvalues

Appendix A: Determination of energy eigenvalues

In a cylindrical coordinate system, we have

$$\begin{aligned} \dfrac{\partial }{\partial x}= & {} \cos \phi \dfrac{\partial }{\partial \rho } - \sin \phi \frac{1}{\rho } \dfrac{\partial }{\partial \phi }, \end{aligned}$$
(A1)
$$\begin{aligned} \dfrac{\partial }{\partial y}= & {} \sin \phi \dfrac{\partial }{\partial \rho } + \cos \phi \frac{1}{\rho } \dfrac{\partial }{\partial \phi }. \end{aligned}$$
(A2)

Also noting that, \( x\pm iy = e^{\pm i \phi } \), we can write

$$\begin{aligned} \Pi _x \pm i \Pi _y= & {} -i \left( {\dfrac{\partial }{\partial x}\pm i \dfrac{\partial }{\partial y}}\right) - e\left( {A_x \pm i A_y}\right) \nonumber \\= & {} -i e^{\pm i \phi } \left\{ {\left( {\dfrac{\partial }{\partial \rho }\pm \frac{i}{\rho } \dfrac{\partial }{\partial \phi }}\right) \pm \rho \frac{1}{2}eB }\right\} . \end{aligned}$$
(A3)

Substituting Eqs. (8) and (9) into Eq. (7) and using Eq. (A3), we arrive at

$$\begin{aligned} E \begin{pmatrix} e^{i(l-1) \phi } f_1 \\ e^{i l \phi } f_2 \\ e^{i(l-1) \phi } f_3 \\ e^{i l \phi } f_4 \end{pmatrix} =\hat{H} \begin{pmatrix} e^{i(l-1) \phi } f_1 \\ e^{i l \phi } f_2 \\ e^{i(l-1) \phi } f_3 \\ e^{i l \phi } f_4 \end{pmatrix} \end{aligned}$$
(A4)

where, \(\hat{H}\) is given by,

$$\begin{aligned} \hat{H} = \begin{pmatrix} m-\mu -a B &{} 0 &{} \mu _5 +p_z &{} -i e^{- i \phi } \left( {{\frac{\partial }{\partial \rho } - \frac{i}{\rho } \frac{\partial }{\partial \phi }} - \frac{1}{2}eB \rho }\right) \\ 0 &{} m-\mu +a B &{} -i e^{ i \phi } \left( {{\frac{\partial }{\partial \rho } + \frac{i}{\rho } \frac{\partial }{\partial \phi }} + \frac{1}{2}eB \rho }\right) &{} \mu _5 -p_z \\ \mu _5+p_z &{} -i e^{- i \phi } \left( {{\frac{\partial }{\partial \rho } - \frac{i}{\rho } \frac{\partial }{\partial \phi }} - \frac{1}{2}eB\rho }\right) &{}-m-\mu +a B &{} 0 \\ -i e^{ i \phi } \left( {{\frac{\partial }{\partial \rho } + \frac{i}{\rho } \frac{\partial }{\partial \phi }} + \frac{1}{2}eB\rho }\right) &{} \mu _5 -p_z &{}0 &{} -m-\mu -a B \end{pmatrix}. \end{aligned}$$

Writing down all the rows of the matrix in Eq. (A4) separately, we arrive at the following four equations:

$$\begin{aligned} \left( {E +\mu - m_1}\right) f_1(\rho )= & {} \left( \mu _5 + p_z\right) f_3(\rho ) \nonumber \\&- i\left( \frac{d}{d \rho }+ \frac{l}{\rho } - \xi \rho \right) f_4(\rho ), \end{aligned}$$
(A5)
$$\begin{aligned} \left( E +\mu - m_2\right) f_2(\rho )= & {} \left( {\mu _5 - p_z}\right) f_4(\rho ) \nonumber \\&- i\left( \frac{d}{d \rho }- \frac{l-1}{\rho } + \xi \rho \right) f_3(\rho ), \end{aligned}$$
(A6)
$$\begin{aligned} \left( {E +\mu + m_1}\right) f_3(\rho )= & {} \left( {\mu _5 + p_z}\right) f_1(\rho ) \nonumber \\&- i\left( \frac{d}{d \rho } + \frac{l}{\rho } - \xi \rho \right) f_2(\rho ), \end{aligned}$$
(A7)
$$\begin{aligned} \left( {E +\mu + m_2}\right) f_4(\rho )= & {} \left( {\mu _5 - p_z}\right) f_2(\rho ) \nonumber \\&- i\left( \frac{d}{d \rho }- \frac{l-1}{\rho } + \xi \rho \right) f_1(\rho )\nonumber \\ \end{aligned}$$
(A8)

where, \( m_1 = (m - a B)\), \( m_2 = (m+a B)\) and \( \xi = eB/2\).

Now multiplying both sides of Eq. (A5) by \( - i\left( {\frac{d}{d \rho } - \frac{l-1}{\rho } + \xi \rho }\right) \), and, using Eqs. (A6) and  (A8), we get after some simplifications

$$\begin{aligned}&\left( {\frac{d^2 {} }{d {\rho }^2} + \frac{1}{\rho } \frac{d {} }{d {\rho }} + 2\xi (l-1) - \xi ^2 \rho ^2 -\frac{l^2}{\rho ^2} + \mathfrak {B}_1^\prime }\right) f_4(\rho ) \nonumber \\&\qquad = \mathfrak {B}_2^\prime f_2(\rho ) \end{aligned}$$
(A9)

where,

$$\begin{aligned} \mathfrak {B}_1^\prime= & {} \left( {E+\mu }\right) ^2 \nonumber \\&- \left( {E+\mu }\right) \left( {m_1 - m_2 }\right) - m_1 m_2 + \mu _5^2 - p_z^2 , \end{aligned}$$
(A10)
$$\begin{aligned} \mathfrak {B}_2^\prime= & {} 2\left( {E+\mu }\right) \mu _5\nonumber \\&- \left( {m_1 + m_2 }\right) \mu _5 + \left( {m_1 - m_2}\right) p_z . \end{aligned}$$
(A11)

Similarly starting from Eq. (A7) one arrives at

$$\begin{aligned}&\left( {\frac{d^2 {} }{d {\rho }^2} + \frac{1}{\rho } \frac{d {} }{d {\rho }} + 2\xi (l-1) - \xi ^2 \rho ^2 -\frac{l^2}{\rho ^2} + \mathfrak {D}_1^\prime }\right) \nonumber \\&\quad \times f_2(\rho ) = \mathfrak {D}_2^\prime f_4(\rho ) \end{aligned}$$
(A12)

where

$$\begin{aligned} \mathfrak {D}_1^\prime= & {} \left( {E+\mu }\right) ^2 + \left( {E+\mu }\right) \left( {m_1 - m_2 }\right) \nonumber \\&- m_1 m_2 + \mu _5^2 - p_z^2 , \end{aligned}$$
(A13)
$$\begin{aligned} \mathfrak {D}_2^\prime= & {} 2\left( {E+\mu }\right) \mu _5 + \left( {m_1 + m_2 }\right) \mu _5\nonumber \\&- \left( {m_1 - m_2}\right) p_z . \end{aligned}$$
(A14)

Introducing a dimensionless variable \( \lambda = \xi \rho ^2 \), we have \( \frac{d {} }{d {\rho }} \rightarrow 2\sqrt{\lambda \xi } \frac{d {} }{d {\lambda }} \), so that, Eqs. (A9) and (A12) become

$$\begin{aligned}&\left[ {\lambda \frac{d^2 {} }{d {\lambda }^2} + \frac{d {} }{d {\lambda }} - \frac{l^2}{4\lambda } - \frac{\lambda }{4} -\frac{1}{2} \left( {l -1}\right) + \mathfrak {B}_1}\right] f_4(\lambda )\nonumber \\&\quad = \mathfrak {B}_2 f_2(\lambda ) , \end{aligned}$$
(A15)
$$\begin{aligned}&\left[ {\lambda \frac{d^2 {} }{d {\lambda }^2} + \frac{d {} }{d {\lambda }} - \frac{l^2}{4\lambda } - \frac{\lambda }{4} -\frac{1}{2} \left( {l -1}\right) + \mathfrak {D}_1}\right] f_2(\lambda ) \nonumber \\&\quad = \mathfrak {D}_2 f_4(\lambda ) \end{aligned}$$
(A16)

where, \( \mathfrak {B}_i = \mathfrak {B}_i^\prime / 4\xi ,\mathfrak {D}_i = \mathfrak {D}_i^\prime / 4\xi \). The functions \( f_1 \) and \( f_3 \) obey similar kind of equations but they will not concern us here as we are only interested to obtain the energy eigenvalue. The above two differential equations have regular singularities at \( \lambda = 0 \). So we can solve them using Frobenius method in which we assume

$$\begin{aligned} f_4(\lambda ) = e^{-\lambda /2} \lambda ^s \sum _{N = 0}^{\infty } c_N \lambda ^N ,\quad f_2(\lambda ) = e^{-\lambda /2} \lambda ^s \sum _{N = 0}^{\infty }d_N \lambda ^N. \end{aligned}$$
(A17)

Substituting Eq. (A17) into Eqs. (A15) and (A16)and equating the coefficient of \( e^{-\lambda /2} \lambda ^{s+N-1}\), we get after some simplifications the following recursion relations

$$\begin{aligned}&\left\{ { \mathfrak {B}_1-N+\frac{1}{2} - \frac{1}{2}(l-1) -s }\right\} c_{N-1}\nonumber \\&\quad + \left\{ {(N+ s)^2 -\frac{l^2}{4} }\right\} c_N - \mathfrak {B}_2~ d_{N-1 }= 0 , \end{aligned}$$
(A18)
$$\begin{aligned}&\left\{ { \mathfrak {D}_1-N+\frac{1}{2} - \frac{1}{2}(l-1) -s }\right\} d_{N-1}\nonumber \\&\quad + \left\{ {(N+ s)^2 -\frac{l^2}{4} }\right\} ~d_N - \mathfrak {D}_2 ~c_{N-1 }= 0 . \end{aligned}$$
(A19)

If we take \( N = 0 \), we get \( 2s = \pm l \). But we will discard the solutions which diverge at \( \lambda = 0 \). Hence, considering \( 2s = l \), we get from Eqs. (A18) and (A19)

$$\begin{aligned} \left( { \mathfrak {B}_1-N+1-l }\right) c_{N-1} + N (N+l) c_N - \mathfrak {B}_2~ d_{N-1 }= & {} 0, \end{aligned}$$
(A20)
$$\begin{aligned} \left( { \mathfrak {D}_1-N+1-l }\right) d_{N-1} + N (N+l) d_N - \mathfrak {D}_2~ c_{N-1 }= & {} 0 .\nonumber \\ \end{aligned}$$
(A21)

To obtain well behaved wave function, we assume that the series must terminate at some \( N = N^\prime \) (this ensures that, we get polynomial solution in \( \lambda \) and since we already have an \( e^{-\lambda /2} \) term, the solution must vanish as \( \lambda \rightarrow \infty \) ) so that, \(c_{N^\prime + 1} = 0\) and \(d_{N^\prime +1 } = 0\). Thus from Eqs. (A20) and (A21), we get

$$\begin{aligned} \left( { \mathfrak {B}_1-N^\prime -l }\right) c_{N^\prime } - \mathfrak {B}_2 ~d_{N^\prime }= & {} 0 , \end{aligned}$$
(A22)
$$\begin{aligned} \left( { \mathfrak {D}_1-N^\prime -l }\right) ~d_{N^\prime } - \mathfrak {D}_2` c_{N^\prime }= & {} 0 . \end{aligned}$$
(A23)

For Eqs. (A22) and (A23) to have non-trivial solutions, we must have

$$\begin{aligned} \text {det} \begin{pmatrix} \mathfrak {B}_1-(N^\prime +l) &{}\quad - \mathfrak {B}_2 \\ - \mathfrak {D}_2 &{}\quad \mathfrak {D}_1-(N^\prime +l) \end{pmatrix} = 0 \end{aligned}$$
(A24)

Simplification of Eq. (A24) yields,

$$\begin{aligned} \left( E+\mu \right) ^4 + \mathfrak {B} \left( E+\mu \right) ^2 + \mathfrak {C} = 0 \end{aligned}$$
(A25)

where

$$\begin{aligned} \mathfrak {B}= & {} - 2\left\{ p_z^2 + m^2 + \mu _5^2 + (a B)^2 \right\} - 8\xi (N^\prime + l) , \end{aligned}$$
(A26)
$$\begin{aligned} \mathfrak {C}= & {} \left\{ p_z^2 + m^2 -( \mu _5^2 + (a B)^2) \right\} ^2 + 4\left( m\mu _5 + p_z a B \right) \nonumber \\&+~ 8\xi (N^\prime + l ) \left\{ p_z^2 + m^2 -( \mu _5^2 + (a B)^2) \right\} \nonumber \\&+ 64 \xi ^2 (N^\prime + l)^2 , \end{aligned}$$
(A27)

and the discriminant is

$$\begin{aligned} (\mathfrak {B}^2 - 4\mathfrak {C})= & {} 16 \left[ \left\{ m^2 + 4\xi (N^\prime + l) \right\} \left( a B\right) ^2 \nonumber \right. \\&\left. + \left\{ p_z^2 + 4\xi (N^\prime + l) \right\} \mu _5^2 - 2 mp_z \mu _5 a B \right] . \nonumber \\ \end{aligned}$$
(A28)

Hence, the solution of Eq. (A25) is given by,

$$\begin{aligned}&(E+ \mu )^2 = \frac{-\mathfrak {B} \pm \sqrt{\mathfrak {B}^2- 4\mathfrak {C}}}{2}\nonumber \\&\quad = p_z^2 + m^2 + \mu _5^2 + \left( a B\right) ^2 \nonumber \\&\qquad + 2 (N^\prime + l) eB \pm 2 \left[ \left\{ m^2 + 2 (N^\prime + l)eB \right\} (a B)^2 \right. \nonumber \\&\qquad \left. + \left\{ p_z^2 + 2 (N^\prime + l)eB \right\} \mu _5^2 - 2 m p_z \mu _5 a B \right] ^{1/2} \end{aligned}$$
(A29)

Following Ref. [81], we replace \( \pm \rightarrow -s {~\mathrm sign}(e B) \) where s is the helicity in the massless case [46, 82]. This will ensure that we get back the correct result when the non-relativistic limit is taken. Also, we identify \((N^\prime +l) =n\) as the Landau level. With these replacements, Eq. (A29) becomes

$$\begin{aligned} (E+ \mu )^2= & {} p_z^2 + m^2 + \mu _5^2 + (a B)^2 + 2 n eB \nonumber \\&- 2 s {~\mathrm sign} (eB) \left[ ( m^2 + 2 n eB ) (a B)^2 \nonumber \right. \\&\left. + ( p_z^2 + 2 n eB ) \mu _5^2 - 2 m p_z \mu _5 a B \right] ^{1/2}. \end{aligned}$$
(A30)

For ground state, we have \( n = 0 \) corresponding to the lowest Landau level (LLL), so that the energy eigenvalue becomes

$$\begin{aligned} (E_0 +\mu )^2 = (p_z - \mu _5)^2 + (m - \kappa \big |{e B}\big |)^2. \end{aligned}$$
(A31)

It is to be noted that, for a positively (negatively) charged fermion, the ground sate contribution comes from spin down (up) state. On the other hand, for higher Landau levels, \( n \ge 1 \) we get,

$$\begin{aligned} (E_{ns}+ \mu )^2= & {} p_z^2 + m^2 + \mu _5^2 + (\kappa e B)^2 + 2 n \big |{eB}\big | \nonumber \\&- 2 s {~\mathrm sign} (e B) \left[ ( m^2 + 2 n \big |{eB}\big | ) (\kappa e B)^2 \nonumber \right. \\&\left. + ( p_z^2 + 2 n \big |{eB}\big | ) \mu _5^2 - 2 m p_z \mu _5 \kappa e B \right] ^{1/2} . \nonumber \\ \end{aligned}$$
(A32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, N., Mukherjee, A., Ghosh, S. et al. Insignificance of the anomalous magnetic moment of the quarks in presence of chiral imbalance. Eur. Phys. J. A 58, 82 (2022). https://doi.org/10.1140/epja/s10050-022-00731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00731-9

Navigation