Skip to main content
Log in

A realistic numerical treatment of Coulomb potential in comparison with the analytical approximations

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

we conduct a more realistic double-folding numerical treatment of the Coulomb potential in comparison with the usual analytical approximation for the different prescriptions of nuclear radius. By using this double-folding technique, we present that a superior approximation to the standard analytical rigid spheres one could be achieved. The results illustrating the differences for the extensively studied \(^{16}\)O + \(^{208}\)Pb system are presented. It is observed that the potential for the short-ranges, which one expects to be below or up-to the barrier, the analytical approximations are inferior to the double-folding procedure, especially so for the simplest radius choice. Our results clearly show that the analytical approaches are rather poor and the use of the double-folding technique for the Coulomb potential will lead to a better determination of the nuclear potential for the interaction of two nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and there is no experimental data.]

References

  1. R. Devries, M. Clover, Coulomb potentials in heavy-ion interactions. Nucl. Phys. A 243(3), 528–532 (1975). https://doi.org/10.1016/0375-9474(75)90294-8

    Article  ADS  Google Scholar 

  2. G. Satchler, W. Love, Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55(3), 183–254 (1979). https://doi.org/10.1016/0370-1573(79)90081-4

    Article  ADS  Google Scholar 

  3. M. Ismail, W. Seif, H. El-Gebaly, On the Coulomb interaction between spherical and deformed nuclei. Phys. Lett. B 563(1–2), 53–60 (2003). https://doi.org/10.1016/S0370-2693(03)00600-2

    Article  ADS  Google Scholar 

  4. B. Carlson, L. Chamon, L. Gasques, Accurate approximation for the Coulomb potential between deformed nuclei. Phys. Rev. C 70(5), 1–4 (2004). https://doi.org/10.1103/PhysRevC.70.057602

    Article  Google Scholar 

  5. O. Ghodsi, J. Ariai, Calculation of the Coulomb potential between spherical-deformed and deformed-deformed nuclei using the Monte Carlo method. Eur. Phys. J. A-Hadrons Nuclei 69, 65–69 (2007). https://doi.org/10.1140/epja/i2007-10412-8, http://www.springerlink.com/index/xp14q3g189122347.pdf

  6. O. Ghodsi, V. Zanganeh, Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces. Phys. Rev. C 79(4), 1–5 (2009). https://doi.org/10.1103/PhysRevC.79.044604

    Article  Google Scholar 

  7. I. Gontchar, M. Chushnyakova, A C-code for the double-folding interaction potential of two spherical nuclei. Comput. Phys. Commun. 181(1), 168–182 (2010). https://doi.org/10.1016/j.cpc.2009.09.007, http://linkinghub.elsevier.com/retrieve/pii/S0010465509002860

  8. G. R. Satchler, Oxford, Uk: Clarendon, p. 833. (International Series Of Monographs On Physics, 68) (1983)

  9. a Umar, V. Oberacker, Heavy-ion interaction potential deduced from density-constrained time-dependent Hartree-Fock calculation. Phys. Rev. C 74(2), 4–6 (2006). https://doi.org/10.1103/PhysRevC.74.021601

    Article  Google Scholar 

  10. aS. Umar, V.E. Oberacker, Density-constrained time-dependent Hartree-Fock calculation of 16O + 208Pb fusion cross-sections. Eur. Phys. J. A 39(2), 243–247 (2009). https://doi.org/10.1140/epja/i2008-10712-5

    Article  ADS  Google Scholar 

  11. H. D. Vries, C. D. Jager, C. D. Vries, nuclear charge-density-distribution parameters from elastic eleci’ron scati’ering. Atom. Data Nucl. 36, 3. http://www.calstatela.edu/faculty/kaniol/phys444/nucl.chg.dist.atm.nucl.data.v36.issue3.pdf

  12. E. Nadjakov, K. Marinova, Y. Gangrsky, Systematics of nuclear charge radii. Atom. Data Nucl. Data Tables 56(1), 133–157 (1994). https://doi.org/10.1006/adnd.1994.1004, http://www.sciencedirect.com/science/article/pii/S0092640X84710047

  13. S. Goriely, M. Samyn, P.-H. Heenen, J.M. Pearson, F. Tondeur, Hartree-Fock mass formulas and extrapolation to new mass data. Phys. Rev. C 66(2), 1–9 (2002). https://doi.org/10.1103/PhysRevC.66.024326

    Article  Google Scholar 

  14. M. Samyn, S. Goriely, P.-H. Heenen, J. Pearson, F. Tondeur, A Hartree-Fock-Bogoliubov mass formula. Nucl. Phys. A 700(1–2), 142–156 (2002). https://doi.org/10.1016/S0375-9474(01)01316-1

    Article  ADS  Google Scholar 

  15. G. Audi, A. Wapstra, The 1995 update to the atomic mass evaluation. Nucl. Phys. A 595(1995), 409–480 (1995). https://doi.org/10.1016/0375-9474(95)00445-9

    Article  ADS  Google Scholar 

  16. J. Dechargé, D. Gogny, Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei. Phys. Rev. C 21, 4. http://prc.aps.org/abstract/PRC/v21/i4/p1568_1

  17. G. Bertsch, M. Girod, S. Hilaire, J.-P. Delaroche, H. Goutte, S. Péru, Systematics of the First 2+ Excitation with the Gogny Interaction. Phys. Rev. Lett. 99(3), 1–4 (2007). https://doi.org/10.1103/PhysRevLett.99.032502

    Article  Google Scholar 

  18. R. Capote, M. Herman, P. Obložinský, P. Young, S. Goriely, T. Belgya, a.V. Ignatyuk, A.J. Koning, S. Hilaire, V. Plujko, M. Avrigeanu, O. Bersillon, M. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V. Maslov, G. Reffo, M. Sin, E. Soukhovitskii, P. Talou, RIPL -reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 110(12), 3107–3214 (2009). https://doi.org/10.1016/j.nds.2009.10.004, http://linkinghub.elsevier.com/retrieve/pii/S0090375209000994

  19. G.R. Satchler, W.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 83–254 (1979). https://doi.org/10.1016/0370-1573(79)90081-4

    Article  Google Scholar 

  20. T. Dao, W. Khoa, H.G. von Oertzen, F. Bohlen, Nuoffer, Study of diffractive and refractive structure in the elastic 16O+16O scattering at incident energies ranging from 124 to 1120 MeV. Nucl. Phys. A 672, 387–416 (2000). https://doi.org/10.1016/S0375-9474(99)00856-8

    Article  ADS  Google Scholar 

  21. V. Yu Denisov, W. Nörenberg, Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A Hadrons Nuclei 15, 375–388 (2002). https://doi.org/10.1140/epja/i2002-10039-3

    Article  ADS  Google Scholar 

  22. I. Gontchar, M. Chushnyakova, A C-code for the double folding interaction potential of two spherical nuclei. Comput. Phys. Commun. 181, 168–182 (2010). https://doi.org/10.1016/j.cpc.2009.09.007

    Article  ADS  MATH  Google Scholar 

  23. L.R. Gasques, L.C. Chamon, D. Pereira, V. Guimarães, A. Lépine-Szily, M.A.G. Alvarez, E.S. Rossi, C.P. Silva, B.V. Carlson, J.J. Kolata, L. Lamm, D. Peterson, P. Santi, S. Vincent, P.A. De Young, G. Peasley, Experimental determination of the surface density for the \({}^{6}\rm He\) exotic nucleus. Phys. Rev. C 67, 024602 (2003). https://doi.org/10.1103/PhysRevC.67.024602

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kucuk.

Additional information

Communicated by Alexis Diaz-Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Đapo, H., Kucuk, Y. & Boztosun, I. A realistic numerical treatment of Coulomb potential in comparison with the analytical approximations. Eur. Phys. J. A 58, 85 (2022). https://doi.org/10.1140/epja/s10050-022-00728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00728-4

Navigation