Skip to main content
Log in

The influence of entropy and neutrinos on the properties of protoneutron stars

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A neutron star is formed by the evolution of a protoneutron star, so the study of the properties of protoneutron stars can help in understanding the structure and composition of neutron stars. The mass and radius of a cold neutron star calculated by the selected parameters are consistent with various existing astronomical observations. This set of parameters is then extrapolated to study the properties of a protoneutron star. This paper considers the isentropic protoneutron star matter with hyperons to study the temperature, composition, and oscillation under different conditions. Entropy promotes the production of hyperons, while neutrinos inhibit it. The maximum mass increases as the entropy and neutrino proportion increase. The temperature and radius increase with entropy, while the radius decreases as the neutrino proportion increases. The linear relationship between the frequency and average density of the protoneutron star and temperature is fitted, which is important for future observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results are shown in figures or table and are clearly given. The experimental data we cited can be obtained from references.]

References

  1. P.B. Demorest, T. Pennucci, S.M. Ransom et al., A two-solar-mass neutron star measured using Shapiro delay. Nature 467(7319), 1081–1083 (2010)

    Article  ADS  Google Scholar 

  2. Z. Arzoumanian, A. Brazier, S. Burke-Spolaor et al., The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. Astrophys. J. Suppl. Ser. 235(2), 37 (2018)

    Article  ADS  Google Scholar 

  3. J. Antoniadis, P.C.C. Freire, N. Wex et al., A massive pulsar in a compact relativistic binary. Science 340(6131), 448 (2013)

    Article  ADS  Google Scholar 

  4. H.T. Cromartie, E. Fonseca, S.M. Ransom et al., Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 4, 72–76 (2020)

    Article  ADS  Google Scholar 

  5. E. Fonseca, H.T. Cromartie, T.T. Pennucci et al., Refined mass and geometric measurements of the high-mass PSR J0740+6620. Astrophys. J. Lett. 915(1), L12 (2021)

    Article  ADS  Google Scholar 

  6. Y. Lim, J.W. Holt, Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817. Eur. Phys. J. A 55(11), 209 (2019)

    Article  ADS  Google Scholar 

  7. J. Soldateschi, N. Bucciantini, L. Del Zanna, Quasi-universality of the magnetic deformation of neutron stars in general relativity and beyond. Astron. Astrophys. 654, A162 (2021)

    Article  Google Scholar 

  8. G.F. Burgio, H.J. Schulze, I. Vidaña, J.B. Wei, Neutron stars and the nuclear equation of state. Prog. Part. Nucl. Phys. 120, 103879 (2021)

    Article  Google Scholar 

  9. S. Bogdanov, A.J. Dittmann, W.C.G. Ho et al., Constraining the Neutron Star Mass. -Radius Relation and Dense Matter Equation of State with NICER. III. Model Description and Verification of Parameter Estimation Codes. Astrophys. J. Lett. 914(1), L15 (2021)

    Article  ADS  Google Scholar 

  10. C. Adam, A.G. Martín-Caro, M. Huidobro et al., A new consistent neutron star equation of state from a generalized Skyrme model. Phys. Lett. B 811, 135928 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Haster, K. Chatziioannou, A. Bauswein, J.A. Clark, Inference of the Neutron Star Equation of State from Cosmological Distances. Phys. Rev. Lett. 125(26), 261101 (2020)

    Article  ADS  Google Scholar 

  12. G. Colucci, A. Sedrakian, Equation of state of hypernuclear matter: impact of hyperon-scalar-meson couplings. Phys. Rev. C 87(5), 055806 (2013)

    Article  ADS  Google Scholar 

  13. M. Fortin, M. Oertel, C. Providência, Hyperons in hot dense matter: what do the constraints tell us for equation of state? Publ. Astron. Soc. Aust. 35, e044 (2018)

    Article  ADS  Google Scholar 

  14. M. Marques, M. Oertel, M. Hempel, J. Novak, New temperature dependent hyperonic equation of state: application to rotating neutron star models and I-Q relations. Phys. Rev. C 96(4), 045806 (2017)

    Article  ADS  Google Scholar 

  15. P. Char, S. Banik, D. Bandyopadhyay, A comparative study of hyperon equations of state in supernova simulations. Astrophys. J. 809(2), 116 (2015)

    Article  ADS  Google Scholar 

  16. S. Khadkikar, A.R. Raduta, M. Oertel, A. Sedrakian, Maximum mass of compact stars from gravitational wave events with finite-temperature equations of state. Phys. Rev. C 103(5), 055811 (2021)

    Article  ADS  Google Scholar 

  17. M.C. Miller, F.K. Lamb, A.J. Dittmann et al., PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887(1), L24 (2019)

    Article  ADS  Google Scholar 

  18. T.E. Riley, A.L. Watts, S. Bogdanov et al., A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887(1), L21 (2019)

    Article  ADS  Google Scholar 

  19. M.C. Miller, F.K. Lamb, A.J. Dittmann et al., The radius of PSR J0740+6620 from NICER and XMM-newton data. Astrophys. J. Lett. 918(2), L28 (2021)

    Article  ADS  Google Scholar 

  20. T.E. Riley, A.L. Watts, P.S. Ray et al., A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-newton spectroscopy. Astrophys. J. Lett. 918(2), L27 (2021)

    Article  ADS  Google Scholar 

  21. B.P. Abbott, R. Abbott, T.D. Abbott et al., Gw170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

    Article  ADS  Google Scholar 

  22. B.P. Abbott, R. Abbott, T.D. Abbott et al., GW170817: measurements of Neutron star radii and equation of state. Phys. Rev. Lett. 121(16), 161101 (2018)

    Article  ADS  Google Scholar 

  23. H.A. Bethe, Supernova mechanisms. Rev. Mod. Phys. 62(4), 801–866 (1990)

    Article  ADS  Google Scholar 

  24. A. Burrows, J. Goshy, A theory of supernova explosions. Astrophys. J. Lett. 416, L75 (1993)

    Article  ADS  Google Scholar 

  25. A.R. Raduta, M. Oertel, A. Sedrakian, Proto-neutron stars with heavy baryons and universal relations. Mon. Not. R. Astron. Soc. 499(1), 914–931 (2020)

    Article  ADS  Google Scholar 

  26. I. Bombaci, M. Prakash, M. Prakash et al., Composition and structure of protoneutron stars. Phys. Rep. 280, 1–77 (1997)

    Article  ADS  Google Scholar 

  27. J.A. Pons, S. Reddy, M. Prakash et al., Evolution of proto-neutron stars. Astrophys. J. 513(2), 780–804 (1999)

    Article  ADS  Google Scholar 

  28. G. Gamow, M. Schoenberg, Neutrino theory of stellar collapse. Phys. Rev. 59(7), 539–547 (1941)

    Article  ADS  MATH  Google Scholar 

  29. A. Camelio, G. Lovato, L. Gualtieri et al., Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies. Phys. Rev. D 96(4), 043015 (2017)

    Article  ADS  Google Scholar 

  30. K.D. Kokkotas, B.F. Schutz, W-modes—a new family of normal modes of pulsating relativistic stars. Mon. Not. R. Astron. Soc. 255, 119–128 (1992)

    Article  ADS  Google Scholar 

  31. K.D. Kokkotas, B.G. Schmidt, Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2(1), 2 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. H.K. Lau, P.T. Leung, L.M. Lin, Inferring physical parameters of compact stars from their f-mode gravitational wave signals. Astrophys. J. 714(2), 1234–1238 (2010)

    Article  ADS  Google Scholar 

  33. R. Gold, S. Bernuzzi, M. Thierfelder et al., Eccentric binary neutron star mergers. Phys. Rev. D 86(12), 121501 (2012)

  34. D.H. Wen, B.A. Li, H.Y. Chen, N.B. Zhang, GW170817 implications on the frequency and damping time of f-mode oscillations of neutron stars. Phys. Rev. C 99(4), 045806 (2019)

    Article  ADS  Google Scholar 

  35. B.K. Pradhan, D. Chatterjee, Effect of hyperons on f-mode oscillations in neutron stars. Phys. Rev. C 103(3), 035810 (2021)

    Article  ADS  Google Scholar 

  36. A. Sedrakian, A. Harutyunyan, Equation of state and composition of proto-neutron stars and merger remnants with hyperons. Universe 7(10), 382 (2021)

    Article  ADS  Google Scholar 

  37. P.S. Koliogiannis, Ch.C. Moustakidis, Thermodynamical description of hot, rapidly rotating neutron stars, protoneutron stars, and neutron star merger remnants. Astrophys. J. 912(1), 69 (2021)

    Article  ADS  Google Scholar 

  38. J.J. Lu, Z.H. Li, G.F. Burgio et al., Hot neutron stars with microscopic equations of state. Phys. Rev. C 100(5), 054335 (2019)

    Article  ADS  Google Scholar 

  39. J.R. Stone, V. Dexheimer, P.A.M. Guichon et al., Equation of state of hot dense hyperonic matter in the Quark-Meson-Coupling (QMC-A) model. Mon. Not. R. Astron. Soc. 502(3), 3476–3490 (2021)

    Article  ADS  Google Scholar 

  40. T. Yazdizadeh, G.H. Bordbar, Maximum mass of a hot neutron star with a quark core. Res. Astron. Astrophys. 11(4), 471–481 (2011)

    Article  ADS  Google Scholar 

  41. S. Banik, M. Hempel, D. Bandyopadhyay, New hyperon equations of state for supernovae and neutron stars in density-dependent hadron field theory. Astrophys. J. Suppl. Ser. 214(2), 22 (2014)

    Article  ADS  Google Scholar 

  42. J. Roark, X. Du, C. Constantinou et al., Hyperons and quarks in proto-neutron stars. Mon. Not. R. Astron. Soc 486(4), 5441–5447 (2019)

    Article  ADS  Google Scholar 

  43. J.D. Walecka, A theory of highly condensed matter. Ann. Phys. 83, 491–529 (1974)

    Article  ADS  Google Scholar 

  44. N.K. Glendenning, Neutron stars are giant hypernuclei? Astrophys. J. 293, 470–493 (1985)

    Article  ADS  Google Scholar 

  45. B.D. Serot, Quantum hadrodynamics. Rep. Prog. Phys. 55(11), 1855–1946 (1992)

    Article  ADS  Google Scholar 

  46. M. Oertel, F. Gulminelli, C. Providência, A.R. Raduta, Hyperons in neutron stars and supernova cores. Eur. Phys. J. A 52, 50 (2016)

    Article  ADS  Google Scholar 

  47. N.K. Glendenning, F. Weber, S.A. Moszkowski, Neutron stars in the derivative coupling model. Phys. Rev. C 45(2), 844–855 (1992)

    Article  ADS  Google Scholar 

  48. C. Ishizuka, A. Ohnishi, K. Tsubakihara et al., Tables of hyperonic matter equation of state for core-collapse supernovae. J. Phys. G Nucl. Part. Phys. 35(8), 085201 (2008)

    Article  ADS  Google Scholar 

  49. T. Katayama, K. Saito, Hyperons in neutron stars. Phys. Lett. B 747, 43–47 (2015)

    Article  ADS  MATH  Google Scholar 

  50. M. Fortin, A.R. Raduta, S. Avancini, C. Providência, Thermal evolution of relativistic hyperonic compact stars with calibrated equations of state. Phys. Rev. D 103(8), 083004 (2021)

    Article  ADS  Google Scholar 

  51. C.E. Alvarez-Salazar, C.J. Quimbay, About the influence of the density profile on neutron star cooling by neutrino emission. Astropart. Phys. 103, 67–73 (2018)

    Article  ADS  Google Scholar 

  52. S.S. Lenka, P. Char, S. Banik, Properties of massive rotating protoneutron stars with hyperons: structure and universality. J. Phys. G Nucl. Phys. 46(10), 105201 (2019)

    Article  ADS  Google Scholar 

  53. J. Schaffner, C.B. Dover, A. Gal et al., Strange hadronic matter. Phys. Rev. Lett. 71(9), 1328–1331 (1993)

  54. J. Schaffner, C.B. Dover, A. Gal et al., Multiply strange nuclear systems. Ann. Phys. 235(1), 35–76 (1994)

  55. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry. Phys. Rev. C 85(6), 065802 (2012)

  56. A. Reuber, K. Holinde, J. Speth, Meson-exchange hyperon-nucleon interactions in free scattering and nuclear matter. Nucl. Phys. A 570(3), 543–579 (1994)

    Article  ADS  Google Scholar 

  57. H. Huber, F. Weber, M.K. Weigel, Ch. Schaab, Neutron star properties with relativistic equations of state. Int. J. Mod. Phys. E 7(3), 301–339 (1998)

    Article  ADS  Google Scholar 

  58. J. Schaffner, I.N. Mishustin, Hyperon-rich matter in neutron stars. Phys. Rev. C 53(3), 1416–1429 (1996)

    Article  ADS  Google Scholar 

  59. F. Yang, H. Shen, Influence of the hadronic equation of state on the hadron-quark phase transition in neutron stars. Phys. Rev. C 77(2), 025801 (2008)

    Article  ADS  Google Scholar 

  60. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55(4), 374–381 (1939)

    Article  ADS  MATH  Google Scholar 

  61. K.S. Thorne, A. Campolattaro, Non-radial pulsation of general-relativistic stellar models. I. Analytic analysis for L \(>\)= 2. Astrophys. J. 149, 591 (1967)

    Article  ADS  Google Scholar 

  62. T.G. Cowling, The non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc. 101, 367 (1941)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. H. Sotani, N. Yasutake, T. Maruyama, T. Tatsumi, Signatures of hadron-quark mixed phase in gravitational waves. Phys. Rev. D 83(2), 024014 (2011)

    Article  ADS  Google Scholar 

  64. C. Vásquez Flores, G. Lugones, Discriminating hadronic and quark stars through gravitational waves of fluid pulsation modes. Classical Quant. Grav. 31(15):155002 (2014)

  65. I.F. Ranea-Sandoval, O.M. Guilera, M. Mariani, M.G. Orsaria, Oscillation modes of hybrid stars within the relativistic Cowling approximation. J. Cosmol. Astropart. Phys. 2018(12), 031 (2018)

    Article  Google Scholar 

  66. N. Andersson, K.D. Kokkotas, Gravitational waves and pulsating stars: What can we learn from future observations? Phys. Rev. Lett. 77, 4134–4137 (1996)

    Article  ADS  Google Scholar 

  67. N. Andersson, K.D. Kokkotas, Towards gravitational wave asteroseismology. Mon. Not. R. Astron. Soc. 299(4), 1059–1068 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for many useful comments and suggestions. This work was supported by the Natural Science Foundation of China (Grant no. 12105231) and the Guiding Local Science and Technology Development Projects by the Central Government of China (Grant no. 2021ZYD0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hong.

Additional information

Communicated by Jérôme Margueron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Hong, B., Zhou, X. et al. The influence of entropy and neutrinos on the properties of protoneutron stars. Eur. Phys. J. A 58, 76 (2022). https://doi.org/10.1140/epja/s10050-022-00721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00721-x

Navigation