Skip to main content
Log in

Study of the production and decay properties of neutron-deficient nobelium isotopes

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The new neutron-deficient isotope \(^{249}\)No was synthesized for the first time in the fusion-evaporation reaction \(^{204}\)Pb(\(^{48}\)Ca,3n)\(^{249}\)No. After separation, using the kinematic separator SHELS, the new isotope was identified with the GABRIELA detection system through genetic correlations with the known daughter and granddaughter nuclei \(^{245}\)Fm and \(^{241}\)Cf. The alpha-decay activity of \(^{249}\)No has an energy of 9129(22) keV and half-life 38.3(2.8) ms. An upper limit of 0.2% was measured for the fission branch of \(^{249}\)No. Based on the present data and recent information on the decay properties of \(^{253}\)Rf and aided by Geant4 simulations, the ground state of \(^{249}\)No is assigned the 5/2\(^+\)[622] neutron configuration and a partial decay scheme from \(^{253}\)Rf to \(^{245}\)Fm could be established. The production cross-section was found to be \(\sigma \)(3n)=0.47(4) nb at a mid-target beam energy of 225.4 MeV, which corresponds to the maximum of the calculated excitation function. Correlations of the \(^{249}\)No alpha activity with subsequent alpha decays of energy 7728(20) keV and half-life \(1.2_{-0.4}^{+1.0}\) min provided a firm measurement of the electron-capture or \(\beta ^{+}\) branch of \(^{245}\)Fm to \(^{245}\)Es. The excitation function for the 1n, 2n and 3n evaporation channels was measured. In the case of the 2n-evaporation channel \(^{250}\)No, a strong variation of the ground state and isomeric state populations as a function of bombarding energy could be evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data belongs to the GABRIELA collaboration. It may be made available upon request.]

References

  1. A.G. Popeko et al., Nucl. Instr. Meth. B 376, 140 (2016)

    Article  ADS  Google Scholar 

  2. A.V. Yeremin et al., PEPAN Lett. 12, 43 (2015)

    Google Scholar 

  3. A.V. Eremin, A.G. Popeko, PEPAN 35, 895 (2004)

    Google Scholar 

  4. K. Hauschild et al., Nucl. Instr. Meth. A 560, 388 (2006)

    Article  ADS  Google Scholar 

  5. R. Chakma et al., Eur. Phys. J. A 56, 245 (2020)

    Article  ADS  Google Scholar 

  6. G.M. Ter-Akopyan et al., Nucl. Phys. A 255, 509 (1975)

    Article  ADS  Google Scholar 

  7. A.V. Belozerov et al., Eur. Phys. J. A 16, 447 (2003)

    Article  ADS  Google Scholar 

  8. D. Peterson et al., Phys. Rev. C 74, 014316 (2006)

    Article  ADS  Google Scholar 

  9. A.I. Svirikhin et al., PEPAN Lett. 14, 571 (2017)

    Google Scholar 

  10. J. Kallunkathariyil et al., Phys. Rev. C 101, 011301 (2020)

    Article  ADS  Google Scholar 

  11. F.R. Xu et al., Phys. Rev. Lett. 92, 252501 (2004)

    Article  ADS  Google Scholar 

  12. A.I. Svirikhin et al., PEPAN Lett. 18, 445 (2021)

    Google Scholar 

  13. J. Khuyagbaatar et al., Phys. Rev. C 104, L031303 (2021)

    Article  ADS  Google Scholar 

  14. K.H. Schmidt et al., Z. Phys. A 316, 19 (1984)

    Article  ADS  Google Scholar 

  15. F.G. Kondev et al., Chin. Phys. C 45, 030001 (2021)

    Article  ADS  Google Scholar 

  16. M. Nurmia et al., Phys. Lett. B 26, 78 (1967)

    Article  ADS  Google Scholar 

  17. R.J. Silva et al., Phys. Rev. C 1970, 2 (1970)

    Google Scholar 

  18. F.P. Heßberger et al., Eur. Phys. J. A 30, 561 (2006)

    Article  ADS  Google Scholar 

  19. A. Lopez-Martens et al., Phys. Rev. C 105, L021306 (2022)

  20. M. Wang et al., Chin. Phys. C 45, 030003 (2021)

    Article  ADS  Google Scholar 

  21. J. Khuyagbaatar et al., Phys. Rev. C 102, 044312 (2020)

    Article  ADS  Google Scholar 

  22. A.V. Karpov et al., Phys. At. Nucl. 79, 749 (2016)

    Article  Google Scholar 

  23. A.V. Karpov et al., Nucl. Instr. Meth. Phys. Res. A 859, 112 (2017)

    Article  ADS  Google Scholar 

  24. A.V. Karpov et al., PEPAN Lett. 15, 247 (2018)

    Google Scholar 

  25. F.P. Heßberger et al., Eur. Phys. J. A 43, 55 (2010)

    Article  ADS  Google Scholar 

  26. F.P. Heßberger et al., Eur. Phys. J. A 53, 75 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Two of us (B. Andel and S. Antalic) are supported by Slovak Research and Development Agency (Contract No. APVV-18-0268) and Slovak Grant Agency VEGA (Project 1/0651/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Tezekbayeva.

Additional information

Communicated by Alexandre Obertelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tezekbayeva, M.S., Yeremin, A.V., Svirikhin, A.I. et al. Study of the production and decay properties of neutron-deficient nobelium isotopes. Eur. Phys. J. A 58, 52 (2022). https://doi.org/10.1140/epja/s10050-022-00707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00707-9

Navigation