Skip to main content
Log in

Comparison of Coulomb breakup effects on the elastic scattering of \(^{6}\)He and \(^{8}\)He using a Coulomb dipole polarization potential

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A recent new expression for the Coulomb dipole polarization potential (CDPP) is applied to different cluster structures of \(^{6}\)He and \(^{8}\)He. The CDPPs are used to compare the effect of breakup coupling on the elastic scattering of these projectiles from a \(^{208}\)Pb target at incident energies of 16 and 14 MeV, below the Coulomb barrier. None of the cluster structures investigated for \(^8\)He gives a significant CDPP, supporting previous inferences that breakup coupling is much less important for \(^8\)He than for \(^6\)He at energies close to the Coulomb barrier, despite the significantly larger absorption observed in the measured \(^8\)He elastic scattering at 16 MeV compared to that for \(^6\)He. Coupled reaction channels calculations of the 1n stripping reaction indicate a much enhanced role for this reaction in the elastic scattering of \(^8\)He compared to \(^6\)He, alone sufficient to account for the observed significant deviation from Rutherford scattering for \(^8\)He + \(^{208}\)Pb elastic scattering even at this sub-barrier energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Additional data related to this work are available from the authors on request].

References

  1. V. Lapoux, N. Alamanos, Eur. Phys. J. A 51, 91 (2015)

    Article  ADS  Google Scholar 

  2. I. Tanihata, D. Hirata, T. Kobayashi et al., Phys. Lett. B 289, 261 (1992)

    Article  ADS  Google Scholar 

  3. I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)

    Article  ADS  Google Scholar 

  4. M. Meister et al., Nucl. Phys. A 700, 3 (2002)

    Article  ADS  Google Scholar 

  5. G. Marquínez-Durán et al., Phys. Rev. C 94, 064618 (2016)

    Article  ADS  Google Scholar 

  6. G. Marquínez-Durán et al., Phys. Rev. C 98, 034615 (2018)

    Article  ADS  Google Scholar 

  7. I. Martel, N. Keeley, K.W. Kemper, K. Rusek, Phys. Rev. C 102, 034609 (2020)

    Article  ADS  Google Scholar 

  8. G. Marquínez-Durán, N. Keeley, K.W. Kemper, R.S. Mackintosh, I. Martel, K. Rusek, A.M. Sánchez-Benítez, Phys. Rev. C 95, 024602 (2017)

    Article  ADS  Google Scholar 

  9. M. Rodríguez-Gallardo, J.M. Arias, J. Gómez-Camacho, A.M. Moro, I.J. Thompson, J.A. Tostevin, Phys. Rev. C 80, 051601 (2009)

    Article  ADS  Google Scholar 

  10. K. Hagino, H. Sagawa, Phys. Rev. C 72, 044321 (2005)

    Article  ADS  Google Scholar 

  11. A.M. Moro, K. Rusek, J.M. Arias, J. Gomez-Camacho, M. Rodriguez-Gallardo, Phys. Rev. C 75, 064607 (2007)

    Article  ADS  Google Scholar 

  12. D.M. Brink, Phys. Lett. 40B, 37 (1972)

    Article  ADS  Google Scholar 

  13. H.M. Maridi, K. Rusek, N. Keeley, Phys. Rev. C 104, 024614 (2021)

    Article  ADS  Google Scholar 

  14. C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988)

    Article  ADS  Google Scholar 

  15. C.F. Clement, Phys. Rev. 128, 2724 (1962)

    Article  ADS  Google Scholar 

  16. C.F. Clement, Phys. Rev. 128, 2728 (1962)

    Article  ADS  Google Scholar 

  17. V.P. Verbitsky, K.O. Terenetsky, Sov. J. Nucl. Phys. 55, 198 (1992)

    Google Scholar 

  18. L. Borowska, K. Terenetsky, V. Verbitsky, S. Fritzsche, Phys. Rev. C 76, 034606 (2007)

    Article  ADS  Google Scholar 

  19. J. Oppenheimer, M. Phillips, Phys. Rev. 48, 500 (1935)

    Article  ADS  Google Scholar 

  20. G. Baur, D. Trautmann, Phys. Rep. 25, 293 (1976)

    Article  ADS  Google Scholar 

  21. A. Pushkin, B. Jonson, M.V. Zhukov, J. Phys. G 22, L95 (1996)

    Article  ADS  Google Scholar 

  22. S. Shimoura et al., Phys. Lett. B 348, 29 (1995)

    Article  ADS  Google Scholar 

  23. K.J. Cook et al., Phys. Rev. Lett. 124, 212503 (2020)

    Article  ADS  Google Scholar 

  24. M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, X. Xu, Chin. Phys. C 45, 030003 (2021)

    Article  ADS  Google Scholar 

  25. Y. Hahn, Phys. Rev. 142, 603 (1996)

    Article  ADS  Google Scholar 

  26. J. Cseh, A. Algora, J. Darai, P.O. Hess, Phys. Rev. C 70, 034311 (2004)

    Article  ADS  Google Scholar 

  27. L. Acosta et al., Phys. Rev. C 84, 044604 (2011)

    Article  ADS  Google Scholar 

  28. Ł Standyło et al., Phys. Rev. C 87, 064603 (2013)

    Article  ADS  Google Scholar 

  29. L. Giot et al., Phys. Rev. C 71, 064311 (2005)

    Article  ADS  Google Scholar 

  30. A.M. Sánchez-Benítez et al., Nucl. Phys. A 803, 30 (2008)

    Article  ADS  Google Scholar 

  31. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  32. I.J. Thompson, M.A. Nagarajan, J.S. Lilley, M.J. Smithson, Nucl. Phys. A 505, 84 (1989)

    Article  ADS  Google Scholar 

  33. D.Y. Pang, R.S. Mackintosh, Phys. Rev. C 84, 064611 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Polish National Agency for Academic Exchange (NAWA) within the Ulam Programme under grant agreement No. PPN/ULM/2019/1/00189/U/00001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Maridi.

Additional information

Communicated by Alexandre Obertelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maridi, H.M., Rusek, K. & Keeley, N. Comparison of Coulomb breakup effects on the elastic scattering of \(^{6}\)He and \(^{8}\)He using a Coulomb dipole polarization potential. Eur. Phys. J. A 58, 49 (2022). https://doi.org/10.1140/epja/s10050-022-00702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00702-0

Navigation