Skip to main content
Log in

Meson photo-production in GEANT4 for \(E_\gamma =0.225\)–3.0 GeV using the \(\gamma + p \rightarrow n + \pi ^+\) reaction

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In a previous study, we compared experimental data of the total and angular differential cross sections of \(\pi ^0\) photo-production off the proton to theoretical models implemented in version 9.6.p02 of the GEANT4 Monte Carlo simulation toolkit (Amar et al. in Eur Phys J A 55:62, 2019). This paper describes a similar work but for the exclusive and differential cross sections of the \(\pi ^+\) photo-production off the proton. The Chiral Invariant Phase Space (CHIPS) and Bertini Cascade (BERT) models were compared to the experimental data from the CEBAF Large Acceptance Spectrometer (CLAS) of Jefferson Lab and the phenomenological Scattering Analysis Interactive Dial-in (SAID) model. Relativistic Breit–Wigner fits were used to compare the description of the nucleon resonance region up to 3 GeV from SAID, CLAS and CHIPS. As observed in the \(\pi ^0\) case, the CHIPS model provides a reasonable description of the invariant mass distribution while the limited tabulated data set of the BERT model is not adequate. Furthermore, the \(\gamma p \rightarrow n\pi ^+\) differential cross sections \(d\sigma /d\Omega \) show significant differences between CHIPS and both CLAS and SAID data pointing to some needed improvements in its physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data can be retrieved or recreated from Refs. [13, 14, 22, 23].

References

  1. S.B.L. Amar, O. Ka, P. Guèye, Eur. Phys. J. A 55, 62 (2019)

    Article  ADS  Google Scholar 

  2. M. Dugger, B.G. Ritchie, J.P. Ball, P. Collins, E. Pasyuk, R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, G. Adams et al., Phys. Rev. C 76, 025211 (2007). arXiv:0705.0816

    Article  ADS  Google Scholar 

  3. M. Dugger, B.G. Ritchie, J.P. Ball, P. Collins, E. Pasyuk, R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, M.J. Amaryan et al., Phys. Rev. C 79, 065206 (2009). arXiv:0903.1110

    Article  ADS  Google Scholar 

  4. S.J. Brodsky, V.D. Burkert, D.S. Carman, J.P. Chen, Z.F. Cui, M. Döring, H.G. Dosch, J. Draayer, L. Elouadrhiri, D.I. Glazier et al., Int. J. Modern Phys. E 29, 2030006 (2020). https://doi.org/10.1142/S0218301320300064

    Article  ADS  Google Scholar 

  5. D.G. Ireland, E. Pasyuk, I. Strakovsky, Prog. Part. Nucl. Phys. 111, 103752 (2020)

    Google Scholar 

  6. D. Rebreyend, Le nucléon dans tous ses états. Etude de la spectroscopie du nucléon via la photoproduction de mésons (2006). https://tel.archives-ouvertes.fr/tel-00153657

  7. M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  8. L. Marleau, Introduction á la physique des particules, Département de Physique, génie physique et optique, Université Laval, Québec, Canada, rédigé avec Scientific WorkPlace (SWP) et composé avec MiKTeX

  9. P. Skands, Introduction to QCD, Searching for New Physics at Small and Large Scales (World Scientific, Singapore, 2013)

    Google Scholar 

  10. V. Crede, W. Roberts, Rep. Prog. Phys. 76, 076301 (2013)

    Article  ADS  Google Scholar 

  11. M. Guidal, Ph.D. thesis, Université Paris Sud XI Orsay (1996)

  12. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Nucl. Inst. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  13. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  14. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand et al., Nucl. Inst. Methods Phys. Res. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  15. P.A. Zyla et al., PTEP. 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  16. M.P. Guthrie, R.G. Alsmiller, H.W. Bertini, Nucl. Instrum. Meth. 66, 29 (1968)

    Article  ADS  Google Scholar 

  17. H.W. Bertini, M.P. Guthrie, Nucl. Phys. A 169, 670 (1971)

    Article  ADS  Google Scholar 

  18. P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch, Eur. Phys. J. A 9, 411 (2000)

    Article  ADS  Google Scholar 

  19. P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch, Eur. Phys. J. A 9, 421 (2000)

    Article  ADS  Google Scholar 

  20. P.V. Degtyarenko, M.V. Kosov, H.P. Wellisch, Eur. Phys. J. A 8, 217 (2000)

    Article  ADS  Google Scholar 

  21. B. Krusche, Prog. Part. Nucl. Phys. 67, 412 (2012)

    Article  ADS  Google Scholar 

  22. W. Briscoe, M. Doering, H. Haberzettl, I. Strakovsky, R. Workman, Scattering Analysis Interactive Dial-in (SAID). Institute for Nuclear Studies, The Geroge Washington University. http://gwdac.phys.gwu.edu (2021)

  23. The CLAS Collaboration, The JLab Experiment CLAS Physics Database. https://clasweb.jlab.org/physicsdb/intro.html (2021)

  24. V. Mokeev, V. Burkert, D. Carman, L. Elouadrhiri, E. Golovatch, R. Gothe, K. Hicks, B. Ishkhanov, E. Isupov, K. Joo et al., Phys. Lett. B 805, 135457 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our deep gratitude to Rolf Ent and Jefferson Lab for enabling this research and providing partial funding for this work. Jefferson Science Associates, LLC operates Jefferson Lab for the U.S. DOE under U.S. DOE contract DE-AC05-060R23177. We thank the Spanish Cooperation (AECID) for the initial partial funding of this work. We are also thankful to José Goity (Hampton University) for invaluable discussions about the pion photo-production formalism, Igor Strakovski (George Washington University) for his understanding of the SAID model and its usage of the CLAS data set, and Pavel Degtiarenko (Jefferson Lab) for his insightful understanding of the CHIPS model. We also would like to thank Dennis Wright (SLAC National Accelerator Laboratory and Geant4 Collaboration Hadronic Working Group Deputy Coordinator) for his critical review of this document. SBLA benefited greatly from participating twice to the Hampton University Graduate Studies (HUGS) summer schools that was made possible by Cynthia Keppel (Jefferson Lab) and Alberto Accardi (Hampton University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. L. Amar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, S.B.L., Ka, O. & Guèye, P. Meson photo-production in GEANT4 for \(E_\gamma =0.225\)–3.0 GeV using the \(\gamma + p \rightarrow n + \pi ^+\) reaction. Eur. Phys. J. A 57, 340 (2021). https://doi.org/10.1140/epja/s10050-021-00640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00640-3

Navigation