Skip to main content
Log in

Equations of state for hot neutron stars

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We review the equation of state (EoS) models covering a large range of temperatures, baryon number densities and electron fractions presently available on the CompOSE database. These models are intended to be directly usable within numerical simulations of core-collapse supernovae, binary neutron star mergers and proto-neutron star evolution. We discuss their compliance with existing constraints from astrophysical observations and nuclear data. For a selection of purely nucleonic models in reasonable agreement with the above constraints, after discussing the properties of cold matter, we review thermal properties for thermodynamic conditions relevant for core-collapse supernovae and binary neutron star mergers. We find that the latter are strongly influenced by the density dependence of the nucleon effective mass. The selected bunch of models is used to investigate the EoS dependence of hot star properties, where entropy per baryon and electron fraction profiles are inspired from proto-neutron star evolution. The \(\varGamma \)-law analytical thermal EoS used in many simulations is found not to describe well these thermal properties of the EoS. However, it may offer a fair description of the structure of hot stars whenever thermal effects on the baryonic part are small, as shown here for proto-neutron stars starting from several seconds after bounce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. As of August, 30, 2021.

  2. https://compose.obspm.fr/.

  3. The TNTYST table on CompOSE does not provide that data, see Fig. 9 in [91] for that model.

References

  1. J.A. Pons, S. Reddy, M. Prakash, J.M. Lattimer, J.A. Miralles, Astrophys. J. 513(2), 780 (1999). https://doi.org/10.1086/306889

    Article  ADS  Google Scholar 

  2. K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys. J. 667(1), 382 (2007). https://doi.org/10.1086/520876

  3. H.T. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo, B. Mueller, Phys. Rep. 442(1), 38 (2007). https://doi.org/10.1016/j.physrep.2007.02.002. http://www.sciencedirect.com/science/article/pii/S0370157307000439. (The Hans Bethe Centennial Volume 1906–2006)

  4. T. Fischer, S. Whitehouse, A. Mezzacappa, F.K. Thielemann, M. Liebendorfer, Astron. Astrophys. 499, 1 (2009). https://doi.org/10.1051/0004-6361/200811055

    Article  ADS  Google Scholar 

  5. M. Shibata, K. Taniguchi, Living Rev.Rel. 14, 6 (2011). https://doi.org/10.12942/lrr-2011-6

  6. E. O’Connor, C.D. Ott, Astrophys. J. 730, 70 (2011). https://doi.org/10.1088/0004-637X/730/2/70

    Article  ADS  Google Scholar 

  7. M. Hempel, T. Fischer, J. Schaffner-Bielich, M. Liebendörfer, Astrophys. J. 48, 70 (2012). https://doi.org/10.1088/0004-637X/748/1/70

    Article  ADS  Google Scholar 

  8. A. Mezzacappa, E.J. Lentz, S.W. Bruenn, W.R. Hix, O.E.B. Messer, E. Endeve, J.M. Blondin, J.A. Harris, P. Marronetti, K.N. Yakunin, E.J. Lingerfelt, arXiv e-prints arXiv:1507.05680 (2015)

  9. S. Rosswog, Int. J. Mod. Phys. D 24, 1530012 (2015). https://doi.org/10.1142/S0218271815300128

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Baiotti, L. Rezzolla, Rep. Prog. Phys. 80(9), 096901 (2017). https://doi.org/10.1088/1361-6633/aa67bb

    Article  ADS  Google Scholar 

  11. E.P. O’Connor, S.M. Couch, Astrophys. J. 865(2), 81 (2018). https://doi.org/10.3847/1538-4357/aadcf7

    Article  ADS  Google Scholar 

  12. A. Burrows, D. Radice, D. Vartanyan, H. Nagakura, M.A. Skinner, J.C. Dolence, Mon. Not. R. Astron. Soc. 491(2), 2715 (2020). https://doi.org/10.1093/mnras/stz3223

    Article  ADS  Google Scholar 

  13. M. Ruiz, A. Tsokaros, S.L. Shapiro, Phys. Rev. D 101(6), 064042 (2020). https://doi.org/10.1103/PhysRevD.101.064042

    Article  ADS  MathSciNet  Google Scholar 

  14. H.T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012). https://doi.org/10.1146/annurev-nucl-102711-094901

    Article  ADS  Google Scholar 

  15. A. Bauswein, H.T. Janka, K. Hebeler, A. Schwenk, Phys. Rev. D 86, 063001 (2012). https://doi.org/10.1103/PhysRevD.86.063001

    Article  ADS  Google Scholar 

  16. S. Köppel, L. Bovard, L. Rezzolla, Astrophys. J. 872(1), L16 (2019). https://doi.org/10.3847/2041-8213/ab0210

    Article  ADS  Google Scholar 

  17. A. Bauswein, S. Blacker, V. Vijayan, N. Stergioulas, K. Chatziioannou, J.A. Clark, N.U.F. Bastian, D.B. Blaschke, M. Cierniak, T. Fischer, Phys. Rev. Lett. 125(2020). https://doi.org/10.1103/PhysRevLett.125.141103. https://link.aps.org/doi/10.1103/PhysRevLett.125.141103

  18. E. Preau, A. Pascal, J. Novak, M. Oertel, Mon. Not. R. Astron. Soc. 505(1), 939 (2021). https://doi.org/10.1093/mnras/stab1348

    Article  ADS  Google Scholar 

  19. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467(7319), 1081 (2010). https://doi.org/10.1038/nature09466

    Article  ADS  Google Scholar 

  20. Z. Arzoumanian et al., Astrophys. J. Suppl. 235(2), 37 (2018). https://doi.org/10.3847/1538-4365/aab5b0

    Article  ADS  Google Scholar 

  21. J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe, J.W.T. Hessels, V.M. Kaspi, V.I. Kondratiev, N. Langer, T.R. Marsh, M.A. McLaughlin, T.T. Pennucci, S.M. Ransom, I.H. Stairs, J. van Leeuwen, J.P.W. Verbiest, D.G. Whelan, Science 340, 448 (2013). https://doi.org/10.1126/science.1233232

    Article  ADS  Google Scholar 

  22. H.T. Cromartie et al., Nat. Astron. 4(1), 72 (2020). https://doi.org/10.1038/s41550-019-0880-2

    Article  ADS  Google Scholar 

  23. E. Fonseca, H.T. Cromartie, T.T. Pennucci, P.S. Ray, A.Y. Kirichenko, S.M. Ransom, P.B. Demorest, I.H. Stairs, Z. Arzoumanian, L. Guillemot, A. Parthasarathy, M. Kerr, I. Cognard, P.T. Baker, H. Blumer, P.R. Brook, M. DeCesar, T. Dolch, F.A. Dong, E.C. Ferrara, W. Fiore, N. Garver-Daniels, D.C. Good, R. Jennings, M.L. Jones, V.M. Kaspi, M.T. Lam, D.R. Lorimer, J. Luo, A. McEwen, J.W. McKee, M.A. McLaughlin, N. McMann, B.W. Meyers, A. Naidu, C. Ng, D.J. Nice, N. Pol, H.A. Radovan, B. Shapiro-Albert, C.M. Tan, S.P. Tendulkar, J.K. Swiggum, H.M. Wahl, W.W. Zhu, Astrophys. J. Lett. 915(1), L12 (2021). https://doi.org/10.3847/2041-8213/ac03b8

    Article  ADS  Google Scholar 

  24. R.W. Romani, D. Kandel, A.V. Filippenko, T.G. Brink, W. Zheng, Astrophy. J. 908(2), L46 (2021). https://doi.org/10.3847/2041-8213/abe2b4

    Article  ADS  Google Scholar 

  25. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Phys. Rev. C 85, 065802 (2012). https://doi.org/10.1103/PhysRevC.85.065802

    Article  ADS  Google Scholar 

  26. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.012

    Article  ADS  Google Scholar 

  27. L. Bonanno, A. Sedrakian, Astron. Astrophys. 539, A16 (2012). https://doi.org/10.1051/0004-6361/201117832

  28. T. Miyatsu, M.K. Cheoun, K. Saito, Phys. Rev. C 88(2013). https://doi.org/10.1103/PhysRevC.88.015802. https://link.aps.org/doi/10.1103/PhysRevC.88.015802

  29. G. Colucci, A. Sedrakian, Phys. Rev. C 87(2013). https://doi.org/10.1103/PhysRevC.87.055806. https://link.aps.org/doi/10.1103/PhysRevC.87.055806

  30. M. Oertel, C. Providência, F. Gulminelli, A.R. Raduta, J. Phys. G42(7), 075202 (2015). https://doi.org/10.1088/0954-3899/42/7/075202

    Article  ADS  Google Scholar 

  31. D. Chatterjee, I. Vidaña, Eur. Phys. J. A 52(2), 29 (2016). https://doi.org/10.1140/epja/i2016-16029-x

    Article  ADS  Google Scholar 

  32. M. Fortin, C. Providência, A.R. Raduta, F. Gulminelli, J.L. Zdunik, P. Haensel, M. Bejger, Phys. Rev. C 94(2016). https://doi.org/10.1103/PhysRevC.94.035804. https://link.aps.org/doi/10.1103/PhysRevC.94.035804

  33. M. Fortin, S.S. Avancini, C. Providência, I. Vida na, Phys. Rev. C 95(6), 065803 (2017). https://doi.org/10.1103/PhysRevC.95.065803

  34. J.J. Li, A. Sedrakian, F. Weber, Phys. Lett. B 783, 234 (2018). https://doi.org/10.1016/j.physletb.2018.06.051

    Article  ADS  Google Scholar 

  35. A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys. Rev. C 90(2014). https://doi.org/10.1103/PhysRevC.90.065809. https://link.aps.org/doi/10.1103/PhysRevC.90.065809

  36. B.J. Cai, F.J. Fattoyev, B.A. Li, W.G. Newton, Phys. Rev. C 92(2015). https://doi.org/10.1103/PhysRevC.92.015802. https://link.aps.org/doi/10.1103/PhysRevC.92.015802

  37. E. Kolomeitsev, K. Maslov, D. Voskresensky, Nuclear Physics A 961, 106 (2017). https://doi.org/10.1016/j.nuclphysa.2017.02.004. http://www.sciencedirect.com/science/article/pii/S0375947417300295

  38. H.S. Sahoo, G. Mitra, R. Mishra, P.K. Panda, B.A. Li, Phys. Rev. C 98(2018). https://doi.org/10.1103/PhysRevC.98.045801. https://link.aps.org/doi/10.1103/PhysRevC.98.045801

  39. P. Ribes, A. Ramos, L. Tolos, C. Gonzalez-Boquera, M. Centelles, ApJ 883, 168 (2019). https://doi.org/10.3847/1538-4357/ab3a93

    Article  ADS  Google Scholar 

  40. A.R. Raduta, Phys. Lett. B 814, 136070 (2021). https://doi.org/10.1016/j.physletb.2021.136070

    Article  Google Scholar 

  41. T. Malik, S. Banik, D. Bandyopadhyay, Eur. Phys. J. Spec. Top. 230, 561 (2021). https://doi.org/10.1140/epjs/s11734-021-00006-2

    Article  Google Scholar 

  42. V.B. Thapa, M. Sinha, J.J. Li, A. Sedrakian, Phys. Rev. D 103(2021). https://doi.org/10.1103/PhysRevD.103.063004. https://link.aps.org/doi/10.1103/PhysRevD.103.063004

  43. S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, Astrophys. J. Lett. 740(1), L14 (2011). http://stacks.iop.org/2041-8205/740/i=1/a=L14

  44. J.L. Zdunik, P. Haensel, Astron. Astrophys. 551, A61 (2013). https://doi.org/10.1051/0004-6361/201220697

    Article  ADS  Google Scholar 

  45. M.G. Alford, S. Han, M. Prakash, Phys. Rev. D 88(2013). https://doi.org/10.1103/PhysRevD.88.083013. https://link.aps.org/doi/10.1103/PhysRevD.88.083013

  46. D. Alvarez-Castillo, A. Ayriyan, S. Benic, D. Blaschke, H. Grigorian, S. Typel, Eur. Phys. J. A 52(3), 69 (2016). https://doi.org/10.1140/epja/i2016-16069-2

    Article  ADS  Google Scholar 

  47. M.A.R. Kaltenborn, N.U.F. Bastian, D.B. Blaschke, Phys. Rev. D 96(2017). https://doi.org/10.1103/PhysRevD.96.056024. https://link.aps.org/doi/10.1103/PhysRevD.96.056024

  48. G. Monta na, L. Tolós, M. Hanauske, L. Rezzolla, Phys. Rev. D 99, 103009 (2019). https://doi.org/10.1103/PhysRevD.99.103009. https://link.aps.org/doi/10.1103/PhysRevD.99.103009

  49. K. Otto, M. Oertel, B.J. Schaefer, Phys. Rev. D 101(10), 103021 (2020). https://doi.org/10.1103/PhysRevD.101.103021

    Article  ADS  MathSciNet  Google Scholar 

  50. K. Otto, M. Oertel, B.J. Schaefer, Eur. Phys. J. ST 229(22–23), 3629 (2020). https://doi.org/10.1140/epjst/e2020-000155-y

    Article  Google Scholar 

  51. B.P. Abbott et al., Phys. Rev. Lett. 119(2017). https://doi.org/10.1103/PhysRevLett.119.161101. https://link.aps.org/doi/10.1103/PhysRevLett.119.161101

  52. B.P. Abbott et al., Astrophys. J. Lett. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9

    Article  ADS  Google Scholar 

  53. B. Abbott et al., Phys. Rev. X 9(1), 011001 (2019). https://doi.org/10.1103/PhysRevX.9.011001

    Article  Google Scholar 

  54. M.C. Miller et al., ApJLett. 887, L24 (2019). https://doi.org/10.3847/2041-8213/ab50c5

    Article  ADS  Google Scholar 

  55. T.E. Riley et al., ApJ Lett. 887, L21 (2019). https://doi.org/10.3847/2041-8213/ab481c

    Article  ADS  Google Scholar 

  56. M.C. Miller, F.K. Lamb, A.J. Dittmann, S. Bogdanov, Z. Arzoumanian, K.C. Gendreau, S. Guillot, W.C.G. Ho, J.M. Lattimer, M. Loewenstein, S.M. Morsink, P.S. Ray, M.T. Wolff, C.L. Baker, T. Cazeau, S. Manthripragada, C.B. Markwardt, T. Okajima, S. Pollard, I. Cognard, H.T. Cromartie, E. Fonseca, L. Guillemot, M. Kerr, A. Parthasarathy, T.T. Pennucci, S. Ransom, I. Stairs, Astrophys. J. Lett. 918(2), L28 (2021). https://doi.org/10.3847/2041-8213/ac089b

    Article  ADS  Google Scholar 

  57. T.E. Riley, A.L. Watts, P.S. Ray, S. Bogdanov, S. Guillot, S.M. Morsink, A.V. Bilous, Z. Arzoumanian, D. Choudhury, J.S. Deneva, K.C. Gendreau, A.K. Harding, W.C.G. Ho, J.M. Lattimer, M. Loewenstein, R.M. Ludlam, C.B. Markwardt, T. Okajima, C. Prescod-Weinstein, R.A. Remillard, M.T. Wolff, E. Fonseca, H.T. Cromartie, M. Kerr, T.T. Pennucci, A. Parthasarathy, S. Ransom, I. Stairs, L. Guillemot, I. Cognard, Astrophys. J. Lett. 918(2), L27 (2021). https://doi.org/10.3847/2041-8213/ac0a81

    Article  ADS  Google Scholar 

  58. G. Raaijmakers, S.K. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T.E. Riley, A.L. Watts, J.M. Lattimer, W.C.G. Ho, Astrophys. J. Lett. 918(2), L29 (2021). https://doi.org/10.3847/2041-8213/ac089a

    Article  ADS  Google Scholar 

  59. B. Margalit, B.D. Metzger, Astrophys. J. Lett. 850(2), L19 (2017). https://doi.org/10.3847/2041-8213/aa991c

    Article  ADS  Google Scholar 

  60. M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97(2), 021501 (2018). https://doi.org/10.1103/PhysRevD.97.021501

    Article  ADS  Google Scholar 

  61. L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. 852(2), L25 (2018). https://doi.org/10.3847/2041-8213/aaa401. http://dx.doi.org/10.3847/2041-8213/aaa401

  62. M. Shibata, E. Zhou, K. Kiuchi, S. Fujibayashi, Phys. Rev. D 100(2), 023015 (2019). https://doi.org/10.1103/PhysRevD.100.023015

    Article  ADS  Google Scholar 

  63. S. Khadkikar, A.R. Raduta, M. Oertel, A. Sedrakian, Phys. Rev. C 103(2021). https://doi.org/10.1103/PhysRevC.103.055811. https://link.aps.org/doi/10.1103/PhysRevC.103.055811

  64. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97(2), 025806 (2018). https://doi.org/10.1103/PhysRevC.97.025806

  65. J.J. Li, A. Sedrakian, Phys. Rev. C 100(1), 015809 (2019). https://doi.org/10.1103/PhysRevC.100.015809

    Article  ADS  Google Scholar 

  66. S. Traversi, P. Char, G. Pagliara, Astrophys. J. 897, 165 (2020). https://doi.org/10.3847/1538-4357/ab99c1

    Article  ADS  Google Scholar 

  67. C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 89(2014). https://doi.org/10.1103/PhysRevC.89.065802. https://link.aps.org/doi/10.1103/PhysRevC.89.065802

  68. C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 92(2015). https://doi.org/10.1103/PhysRevC.92.025801. https://link.aps.org/doi/10.1103/PhysRevC.92.025801

  69. A.S. Schneider, L.F. Roberts, C.D. Ott, E. O’Connor, Phys. Rev. C 100(2019). https://doi.org/10.1103/PhysRevC.100.055802. https://link.aps.org/doi/10.1103/PhysRevC.100.055802

  70. A. Schneider, E. O’Connor, E. Granqvist, A. Betranhandy, S. Couch, Astrophys. J. 894(1), 4 (2020). https://doi.org/10.3847/1538-4357/ab8308

    Article  ADS  Google Scholar 

  71. H. Yasin, S. Schäfer, A. Arcones, A. Schwenk, Phys. Rev. Lett. 124(2020). https://doi.org/10.1103/PhysRevLett.124.092701. https://link.aps.org/doi/10.1103/PhysRevLett.124.092701

  72. C.A. Raithel, V. Paschalidis, F. Özel, Phys. Rev. D 104(2021). https://doi.org/10.1103/PhysRevD.104.063016. https://link.aps.org/doi/10.1103/PhysRevD.104.063016

  73. O.E. Andersen, S. Zha, A. da Silva Schneider, A. Betranhandy, S.M. Couch, E.P. O’Connor, arXiv e-prints arXiv:2106.09734 (2021)

  74. S. Typel, M. Oertel, T. Klähn, Phys. Part. Nucl. 46(4), 633 (2015). https://doi.org/10.1134/S1063779615040061

    Article  Google Scholar 

  75. K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi, Y.i. Sekiguchi, M. Shibata, K. Taniguchi, Phys. Rev. D 88, 044026 (2013). https://doi.org/10.1103/PhysRevD.88.044026. https://link.aps.org/doi/10.1103/PhysRevD.88.044026

  76. A. Bauswein, H.T. Janka, R. Oechslin, Phys. Rev. D 82(2010). https://doi.org/10.1103/PhysRevD.82.084043. https://link.aps.org/doi/10.1103/PhysRevD.82.084043

  77. A. Endrizzi, D. Logoteta, B. Giacomazzo, I. Bombaci, W. Kastaun, R. Ciolfi, Phys. Rev. D 98(2018). https://doi.org/10.1103/PhysRevD.98.043015. https://link.aps.org/doi/10.1103/PhysRevD.98.043015

  78. G. Camelio, T. Dietrich, M. Marques, S. Rosswog, Phys. Rev. D 100(12), 123001 (2019). https://doi.org/10.1103/PhysRevD.100.123001

    Article  ADS  MathSciNet  Google Scholar 

  79. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89(1), 015007 (2017). https://doi.org/10.1103/RevModPhys.89.015007

    Article  ADS  Google Scholar 

  80. G. Fiorella Burgio, A.F. Fantina, Astrophys. Space Sci. Libr. 457, 255 (2018). https://doi.org/10.1007/978-3-319-97616-76

  81. M. Dutra, O. Lourenço, J.S. Sá Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012). https://doi.org/10.1103/PhysRevC.85.035201. https://link.aps.org/doi/10.1103/PhysRevC.85.035201

  82. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635(1), 231 (1998). https://doi.org/10.1016/S0375-9474(98)00180-8. https://www.sciencedirect.com/science/article/pii/S0375947498001808

  83. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providencia, S. Typel, J.R. Stone, Phys. Rev. C 90(5), 055203 (2014). https://doi.org/10.1103/PhysRevC.90.055203

    Article  ADS  Google Scholar 

  84. V. Dexheimer, S. Schramm, Astrophys. J. 683(2), 943 (2008). https://doi.org/10.1086/589735

    Article  ADS  Google Scholar 

  85. V. Dexheimer, Publications of the Astronomical Society of Australia 34 (2017). https://doi.org/10.1017/pasa.2017.61. http://dx.doi.org/10.1017/pasa.2017.61

  86. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998). https://doi.org/10.1103/PhysRevC.58.1804. https://link.aps.org/doi/10.1103/PhysRevC.58.1804

  87. A. Akmal, V.R. Pandharipande, Phys. Rev. C 56, 2261 (1997). https://doi.org/10.1103/PhysRevC.56.2261. https://link.aps.org/doi/10.1103/PhysRevC.56.2261

  88. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995). https://doi.org/10.1103/PhysRevC.51.38. https://link.aps.org/doi/10.1103/PhysRevC.51.38

  89. J. Carlson, V.R. Pandharipande, R.B. Wiringa, Nucl. Phys. A 401, 59 (1983). https://doi.org/10.1016/0375-9474(83)90336-6

    Article  ADS  Google Scholar 

  90. B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995). https://doi.org/10.1103/PhysRevLett.74.4396. https://link.aps.org/doi/10.1103/PhysRevLett.74.4396

  91. H. Kanzawa, K. Oyamatsu, K. Sumiyoshi, M. Takano, Nucl. Phys. A 791(1), 232 (2007). https://doi.org/10.1016/j.nuclphysa.2007.01.098. https://www.sciencedirect.com/science/article/pii/S0375947407001194

  92. H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, Nucl. Phys. A 961, 78 (2017). https://doi.org/10.1016/j.nuclphysa.2017.02.010. https://www.sciencedirect.com/science/article/pii/S0375947417300350

  93. A. Burrows, J.M. Lattimer, Astrophys. J. 285, 294 (1984). https://doi.org/10.1086/162505

    Article  ADS  Google Scholar 

  94. W.R. Hix, O.E.B. Messer, A. Mezzacappa, M. Liebendoerfer, J. Sampaio, K. Langanke, D.J. Dean, G. Martinez-Pinedo, Phys. Rev. Lett. 91, 201102 (2003). https://doi.org/10.1103/PhysRevLett.91.201102

    Article  ADS  Google Scholar 

  95. C. Sullivan, E. O’Connor, R.G.T. Zegers, T. Grubb, S.M. Austin, Astrophys. J. 816(1), 44 (2016). https://doi.org/10.3847/0004-637X/816/1/44

    Article  ADS  Google Scholar 

  96. A. Pascal, S. Giraud, A.F. Fantina, F. Gulminelli, J. Novak, M. Oertel, A.R. Raduta, Phys. Rev. C 101(1), 015803 (2020). https://doi.org/10.1103/PhysRevC.101.015803

    Article  ADS  Google Scholar 

  97. J.M. Lattimer, D.F. Swesty, Nucl. Phys. A 535(2), 331 (1991). https://doi.org/10.1016/0375-9474(91)90452-C

    Article  ADS  Google Scholar 

  98. M. Oertel, A.F. Fantina, J. Novak, Phys. Rev. C 85(2012). https://doi.org/10.1103/PhysRevC.85.055806. https://link.aps.org/doi/10.1103/PhysRevC.85.055806

  99. B. Peres, M. Oertel, J. Novak, Phys. Rev. D 87(4), 043006 (2013). https://doi.org/10.1103/PhysRevD.87.043006

    Article  ADS  Google Scholar 

  100. A.S. Schneider, L.F. Roberts, C.D. Ott, Phys. Rev. C 96(2017). https://doi.org/10.1103/PhysRevC.96.065802. https://link.aps.org/doi/10.1103/PhysRevC.96.065802

  101. A.S. Schneider, C. Constantinou, B. Muccioli, M. Prakash, Phys. Rev. C 100(2), 025803 (2019). https://doi.org/10.1103/PhysRevC.100.025803

    Article  ADS  Google Scholar 

  102. H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Prog. Theor. Phys. 100(5), 1013 (1998). https://doi.org/10.1143/PTP.100.1013

    Article  ADS  Google Scholar 

  103. H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637(3), 435 (1998). https://doi.org/10.1016/S0375-9474(98)00236-X. https://www.sciencedirect.com/science/article/pii/S037594749800236X

  104. Y. Sugahara, H. Toki, Nucl. Phys. A 579(3), 557 (1994). https://doi.org/10.1016/0375-9474(94)90923-7. https://www.sciencedirect.com/science/article/pii/0375947494909237

  105. H. Shen, F. Ji, J. Hu, K. Sumiyoshi, Astrophys. J. 891, 148 (2020). https://doi.org/10.3847/1538-4357/ab72fd

    Article  ADS  Google Scholar 

  106. K. Sumiyoshi, K. Nakazato, H. Suzuki, J. Hu, H. Shen, Astrophys. J. 887, 110 (2019). https://doi.org/10.3847/1538-4357/ab5443

    Article  ADS  Google Scholar 

  107. C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, S. Yamada, J. Phys. G Nucl. Particle Phys. 35(8)(2008). https://doi.org/10.1088/0954-3899/35/8/085201

  108. I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, A. Mezzacappa, F.K. Thielemann, M. Liebendörfer, Phys. Rev. Lett. 102(2009). https://doi.org/10.1103/PhysRevLett.102.081101. https://link.aps.org/doi/10.1103/PhysRevLett.102.081101

  109. I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, F.K. Thielemann, M. Liebendörfer, J. Phys. G Nucl. Particle Phys. 37(9)(2010). https://doi.org/10.1088/0954-3899/37/9/094064

  110. T. Fischer, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, T. Rauscher, F.K. Thielemann, R. Kappeli, G. Martinez-Pinedo, M. Liebendorfer, Astrophys. J. Suppl. 194, 39 (2011). https://doi.org/10.1088/0067-0049/194/2/39

    Article  ADS  Google Scholar 

  111. S. Furusawa, S. Yamada, K. Sumiyoshi, H. Suzuki, Astrophys. J. 738, 178 (2011). https://doi.org/10.1088/0004-637X/738/2/178

    Article  ADS  Google Scholar 

  112. S. Furusawa, K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys. J. 772, 95 (2013). https://doi.org/10.1088/0004-637X/772/2/95

    Article  ADS  Google Scholar 

  113. S. Furusawa, K. Sumiyoshi, S. Yamada, H. Suzuki, Nucl. Phys. A 957, 188 (2017). https://doi.org/10.1016/j.nuclphysa.2016.09.002

    Article  ADS  Google Scholar 

  114. S. Furusawa, H. Togashi, H. Nagakura, K. Sumiyoshi, S. Yamada, H. Suzuki, M. Takano, J. Phys. G Nucl. Particle Phys. 44(9)(2017). https://doi.org/10.1088/1361-6471/aa7f35

  115. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36(12), 1603 (2012). https://doi.org/10.1088/1674-1137/36/12/003

    Article  Google Scholar 

  116. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81(2010). https://doi.org/10.1103/PhysRevC.81.015803. https://link.aps.org/doi/10.1103/PhysRevC.81.015803

  117. G. Shen, C.J. Horowitz, S. Teige, Phys. Rev. C 82(2010). https://doi.org/10.1103/PhysRevC.82.015806. https://link.aps.org/doi/10.1103/PhysRevC.82.015806

  118. G. Shen, C.J. Horowitz, S. Teige, Phys. Rev. C 82(2010). https://doi.org/10.1103/PhysRevC.82.045802. https://link.aps.org/doi/10.1103/PhysRevC.82.045802

  119. G. Shen, C.J. Horowitz, S. Teige, Phys. Rev. C 83(2011). https://doi.org/10.1103/PhysRevC.83.035802. https://link.aps.org/doi/10.1103/PhysRevC.83.035802

  120. G. Shen, C.J. Horowitz, E. O’Connor, Phys. Rev. C 83(2011). https://doi.org/10.1103/PhysRevC.83.065808. https://link.aps.org/doi/10.1103/PhysRevC.83.065808

  121. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997). https://doi.org/10.1103/PhysRevC.55.540. https://link.aps.org/doi/10.1103/PhysRevC.55.540

  122. B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95(2005). https://doi.org/10.1103/PhysRevLett.95.122501. https://link.aps.org/doi/10.1103/PhysRevLett.95.122501

  123. M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.010

    Article  ADS  Google Scholar 

  124. S. Banik, M. Hempel, D. Bandyopadhyay, Astrophys. J. Suppl. Ser. 214(2), 22 (2014). https://doi.org/10.1088/0067-0049/214/2/22

    Article  ADS  Google Scholar 

  125. M. Marques, M. Oertel, M. Hempel, J. Novak, Phys. Rev. C 96(2017). https://doi.org/10.1103/PhysRevC.96.045806. https://link.aps.org/doi/10.1103/PhysRevC.96.045806

  126. M. Fortin, M. Oertel, C. Providência, Publ. Astron. Soc. Aust. 35, 44 (2018). https://doi.org/10.1017/pasa.2018.32

    Article  ADS  Google Scholar 

  127. N.U.F. Bastian, Phys. Rev. D 103(2021). https://doi.org/10.1103/PhysRevD.103.023001. https://link.aps.org/doi/10.1103/PhysRevD.103.023001

  128. G. Röpke, Phys. Rev. C 79(2009). https://doi.org/10.1103/PhysRevC.79.014002. https://link.aps.org/doi/10.1103/PhysRevC.79.014002

  129. S. Typel, J. Phys. G Nucl. Particle Phys. 45(11)(2018). https://doi.org/10.1088/1361-6471/aadea5

  130. F. Gulminelli, A.R. Raduta, Phys. Rev. C 92(5), 055803 (2015). https://doi.org/10.1103/PhysRevC.92.055803

    Article  ADS  Google Scholar 

  131. A.R. Raduta, F. Gulminelli, Nucl. Phys. A 983, 252 (2019). https://doi.org/10.1016/j.nuclphysa.2018.11.003

    Article  ADS  Google Scholar 

  132. P. Danielewicz, J. Lee, Nucl. Phys. A 818(1), 36 (2009). https://doi.org/10.1016/j.nuclphysa.2008.11.007. https://www.sciencedirect.com/science/article/pii/S0375947408007926

  133. J. Duflo, A. Zuker, Phys. Rev. C 52, R23 (1995). https://doi.org/10.1103/PhysRevC.52.R23. https://link.aps.org/doi/10.1103/PhysRevC.52.R23

  134. J. Negele, D. Vautherin, Nucl. Phys. A 207(2), 298 (1973). https://doi.org/10.1016/0375-9474(73)90349-7. https://www.sciencedirect.com/science/article/pii/0375947473903497

  135. P. Haensel, J.L. Zdunik, J. Dobaczewski, Astron. Astrophys. 222(1–2), 353 (1989)

    ADS  Google Scholar 

  136. V. Dexheimer, R. Negreiros, S. Schramm, Phys. Rev. C 92(2015). https://doi.org/10.1103/PhysRevC.92.012801. https://link.aps.org/doi/10.1103/PhysRevC.92.012801

  137. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002

    Article  ADS  Google Scholar 

  138. G. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71(1), 1 (1999). https://doi.org/10.1006/adnd.1998.0795. https://www.sciencedirect.com/science/article/pii/S0092640X98907951

  139. L. Geng, H. Toki, J. Meng, Prog. Theor. Phys. 113(4), 785 (2005). https://doi.org/10.1143/PTP.113.785

    Article  ADS  Google Scholar 

  140. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729(1), 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003

    Article  ADS  Google Scholar 

  141. X. Roca-Maza, J. Piekarewicz, Phys. Rev. C 78(2008). https://doi.org/10.1103/PhysRevC.78.025807. https://link.aps.org/doi/10.1103/PhysRevC.78.025807

  142. A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774(1), 17 (2013). https://doi.org/10.1088/0004-637x/774/1/17

    Article  ADS  Google Scholar 

  143. M. Wang, G. Audi, F.G. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41(3)(2017). https://doi.org/10.1088/1674-1137/41/3/030003

  144. A. Bauswein, N.U.F. Bastian, D.B. Blaschke, K. Chatziioannou, J.A. Clark, T. Fischer, M. Oertel, Phys. Rev. Lett. 122(2019). https://doi.org/10.1103/PhysRevLett.122.061102. https://link.aps.org/doi/10.1103/PhysRevLett.122.061102

  145. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97(2), 025805 (2018). https://doi.org/10.1103/PhysRevC.97.025805

  146. E. Khan, J. Margueron, Phys. Rev. Lett. 109, 092501 (2012). https://doi.org/10.1103/PhysRevLett.109.092501

    Article  ADS  Google Scholar 

  147. James M. Lattimer, Andrew W. Steiner, Eur. Phys. J. A 50(2), 40 (2014). https://doi.org/10.1140/epja/i2014-14040-y

    Article  ADS  Google Scholar 

  148. B.A. Li, B.J. Cai, W.J. Xie, N.B. Zhang, Universe 7(6) (2021). https://doi.org/10.3390/universe7060182. https://www.mdpi.com/2218-1997/7/6/182

  149. B.T. Reed, F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 126(2021). https://doi.org/10.1103/PhysRevLett.126.172503. https://link.aps.org/doi/10.1103/PhysRevLett.126.172503

  150. S. Shlomo, V.M. Kolomietz, G. Colò, Eur. Phys. J. A 30(1), 23 (2006). https://doi.org/10.1140/epja/i2006-10100-3

    Article  ADS  Google Scholar 

  151. B.K. Agrawal, S. Shlomo, V.K. Au, Phys. Rev. C 72(2005). https://doi.org/10.1103/PhysRevC.72.014310. https://link.aps.org/doi/10.1103/PhysRevC.72.014310

  152. L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73(2006). https://doi.org/10.1103/PhysRevC.73.014313. https://link.aps.org/doi/10.1103/PhysRevC.73.014313

  153. A. Steiner, M. Prakash, J. Lattimer, P. Ellis, Phys. Rep. 411(6), 325 (2005). https://doi.org/10.1016/j.physrep.2005.02.004. https://www.sciencedirect.com/science/article/pii/S0370157305001043

  154. S.S. Bao, J.N. Hu, Z.W. Zhang, H. Shen, Phys. Rev. C 90(2014). https://doi.org/10.1103/PhysRevC.90.045802. https://link.aps.org/doi/10.1103/PhysRevC.90.045802

  155. H. Toki, D. Hirata, Y. Sugahara, K. Sumiyoshi, I. Tanihata, Nucl. Phys. A 588(1)(1995). https://doi.org/10.1016/0375-9474(95)00161-S. https://www.sciencedirect.com/science/article/pii/037594749500161S. Proceedings of the Fifth International Symposium on Physics of Unstable Nuclei

  156. F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82(2010). https://doi.org/10.1103/PhysRevC.82.055803. https://link.aps.org/doi/10.1103/PhysRevC.82.055803

  157. J. Piekarewicz, M. Centelles, Phys. Rev. C 79(2009). https://doi.org/10.1103/PhysRevC.79.054311. https://link.aps.org/doi/10.1103/PhysRevC.79.054311

  158. L.W. Chen, B.J. Cai, C.M. Ko, B.A. Li, C. Shen, J. Xu, Phys. Rev. C 80(2009). https://doi.org/10.1103/PhysRevC.80.014322. https://link.aps.org/doi/10.1103/PhysRevC.80.014322

  159. S. Typel. private com

  160. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93(5), 054314 (2016). https://doi.org/10.1103/PhysRevC.93.054314

    Article  ADS  Google Scholar 

  161. Ad.R. Raduta, F. Aymard, F. Gulminelli, Eur. Phys. J. A 50(2), 24 (2014). https://doi.org/10.1140/epja/i2014-14024-y

    Article  ADS  Google Scholar 

  162. S. Typel, H.H. Wolter, G. Röpke, D. Blaschke, Eur. Phys. J. A 50(2), 17 (2014). https://doi.org/10.1140/epja/i2014-14017-x

    Article  ADS  Google Scholar 

  163. J.M. Lattimer, M. Prakash, Astrophys. J. 550(1), 426 (2001). https://doi.org/10.1086/319702

    Article  ADS  Google Scholar 

  164. J. Hu, S. Bao, Y. Zhang, K. Nakazato, K. Sumiyoshi, H. Shen, PTEP 2020(4), 043D01 (2020). https://doi.org/10.1093/ptep/ptaa016

  165. T. Malik, B.K. Agrawal, C. Providência, J.N. De, Phys. Rev. C 102(5), 052801 (2020). https://doi.org/10.1103/PhysRevC.102.052801

    Article  ADS  Google Scholar 

  166. B.A. Li, M. Magno, Phys. Rev. C 102(4), 045807 (2020). https://doi.org/10.1103/PhysRevC.102.045807

    Article  ADS  Google Scholar 

  167. M. Fortin, A.R. Raduta, S. Avancini, C. Providência, Phys. Rev. D 103(8), 083004 (2021). https://doi.org/10.1103/PhysRevD.103.083004

    Article  ADS  Google Scholar 

  168. B.A. Li, B.J. Cai, L.W. Chen, J. Xu, Prog. Part. Nucl. Phys. 99, 29 (2018). https://doi.org/10.1016/j.ppnp.2018.01.001

    Article  ADS  Google Scholar 

  169. M. Jaminon, C. Mahaux, Phys. Rev. C 40, 354 (1989). https://doi.org/10.1103/PhysRevC.40.354. https://link.aps.org/doi/10.1103/PhysRevC.40.354

  170. F. Sammarruca, W. Barredo, P. Krastev, Phys. Rev. C 71(2005). https://doi.org/10.1103/PhysRevC.71.064306. https://link.aps.org/doi/10.1103/PhysRevC.71.064306

  171. E.N.E.v. Dalen, C. Fuchs, A. Faessler, Phys. Rev. C 72, 065803 (2005). https://doi.org/10.1103/PhysRevC.72.065803. https://link.aps.org/doi/10.1103/PhysRevC.72.065803

  172. M. Baldo, G.F. Burgio, H.J. Schulze, G. Taranto, Phys. Rev. C 89(2014). https://doi.org/10.1103/PhysRevC.89.048801. https://link.aps.org/doi/10.1103/PhysRevC.89.048801

  173. X.L. Shang, A. Li, Z.Q. Miao, G.F. Burgio, H.J. Schulze, Phys. Rev. C 101(2020). https://doi.org/10.1103/PhysRevC.101.065801. https://link.aps.org/doi/10.1103/PhysRevC.101.065801

  174. L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C 76(2007). https://doi.org/10.1103/PhysRevC.76.054316. https://link.aps.org/doi/10.1103/PhysRevC.76.054316

  175. R. Somasundaram, C. Drischler, I. Tews, J. Margueron, Phys. Rev. C 103(2021). https://doi.org/10.1103/PhysRevC.103.045803. https://link.aps.org/doi/10.1103/PhysRevC.103.045803

  176. J. Chen, J. Clark, R. Davé, V. Khodel, Nucl. Phys. A 555(1), 59 (1993). https://doi.org/10.1016/0375-9474(93)90314-N. https://www.sciencedirect.com/science/article/pii/037594749390314N

  177. D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, P. Haensel, Phys. Rep. 354, 1 (2001). https://doi.org/10.1016/S0370-1573(00)00131-9

    Article  ADS  Google Scholar 

  178. D.A. Baiko, P. Haensel, D.G. Yakovlev, Astron. Astrophys. 374(1), 151 (2001). https://doi.org/10.1051/0004-6361:20010621

    Article  ADS  Google Scholar 

  179. D. Yakovlev, C. Pethick, Annu. Rev. Astron. Astrophys. 42(1), 169 (2004). https://doi.org/10.1146/annurev.astro.42.053102.134013

    Article  ADS  Google Scholar 

  180. C.A. Raithel, F. Ozel, D. Psaltis, Astrophys. J. 875(1), 12 (2019). https://doi.org/10.3847/1538-4357/ab08ea

    Article  ADS  Google Scholar 

  181. A. Carbone, A. Schwenk, Phys. Rev. C 100(2019). https://doi.org/10.1103/PhysRevC.100.025805. https://link.aps.org/doi/10.1103/PhysRevC.100.025805

  182. C. Ducoin, P. Chomaz, F. Gulminelli, Nucl. Phys. A 789, 403 (2007). https://doi.org/10.1016/j.nuclphysa.2007.03.006

    Article  ADS  Google Scholar 

  183. T. Fischer, N.U. Bastian, D. Blaschke, M. Cierniak, M. Hempel, T. Klähn, G. Martínez-Pinedo, W.G. Newton, G. Röpke, S. Typel, Publ. Astron. Soc. Aust. 34, 67 (2017). https://doi.org/10.1017/pasa.2017.63

    Article  ADS  Google Scholar 

  184. A. Yudin, M. Hempel, S. Blinnikov, D. Nadyozhin, I. Panov, Mon. Not. R. Astron. Soc. 483(4), 5426 (2019). https://doi.org/10.1093/mnras/sty3468

    Article  ADS  Google Scholar 

  185. A.R. Raduta, F. Gulminelli, M. Oertel, Phys. Rev. C 93(2), 025803 (2016). https://doi.org/10.1103/PhysRevC.93.025803

    Article  ADS  Google Scholar 

  186. A. Juodagalvis, K. Langanke, W. Hix, G. Martínez-Pinedo, J. Sampaio, Nucl. Phys. A 848(3), 454 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.012. https://www.sciencedirect.com/science/article/pii/S037594741000686X

  187. J. Lattimer, C. Pethick, D. Ravenhall, D. Lamb, Nuclear Physics A 432(3), 646 (1985). https://doi.org/10.1016/0375-9474(85)90006-5. https://www.sciencedirect.com/science/article/pii/0375947485900065

  188. M. Terasawa, K. Sumiyoshi, T. Kajino, I. Tanihata, G.J. Mathews, K. Langanke, Nucl. Phys. A 688, 581 (2001). https://doi.org/10.1016/S0375-9474(01)00795-3

    Article  ADS  Google Scholar 

  189. A. Arcones, G. Martinez-Pinedo, E. O’Connor, A. Schwenk, H.T. Janka, C.J. Horowitz, K. Langanke, Phys. Rev. C 78, 015806 (2008). https://doi.org/10.1103/PhysRevC.78.015806

    Article  ADS  Google Scholar 

  190. L. Ou, Z. Li, Y. Zhang, M. Liu, Phys. Lett. B 697, 246 (2011). https://doi.org/10.1016/j.physletb.2011.01.062

    Article  ADS  Google Scholar 

  191. L.F. Roberts, S. Reddy, G. Shen, Phys. Rev. C 86(6), 065803 (2012). https://doi.org/10.1103/PhysRevC.86.065803

    Article  ADS  Google Scholar 

  192. K. Nakazato, H. Suzuki, Astrophys. J. 878(1), 25 (2019). https://doi.org/10.3847/1538-4357/ab1d4b

    Article  ADS  Google Scholar 

  193. A. Pascal. Modélisation de l’évolution d’une proto-étoile à neutrons. Thèse de doctorat à l’Université Paris Sciences et Lettres (2021)

  194. E.R. Most, C.A. Raithel, arXiv e-prints arXiv:2107.06804 (2021)

  195. M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J.M. Lattimer, R. Knorren, Phys. Rep. 280(1), 1 (1997). https://doi.org/10.1016/S0370-1573(96)00023-3. http://www.sciencedirect.com/science/article/pii/S0370157396000233

  196. L. Villain, J.A. Pons, P. Cerda-Duran, E. Gourgoulhon, Astron. Astrophys. 418, 283 (2004). https://doi.org/10.1051/0004-6361:20035619

    Article  ADS  Google Scholar 

  197. L.F. Roberts, Astrophys. J. 755, 126 (2012). https://doi.org/10.1088/0004-637X/755/2/126

    Article  ADS  Google Scholar 

  198. K. Sumiyoshi, J.M. Ibá nez, J.V. Romero, Astron. Astrophys. Suppl. Ser. 134(1), 39 (1999). https://doi.org/10.1051/aas:1999123

  199. K. Strobel, C. Schaab, M.K. Weigel, Astron. Astrophys. 350, 497 (1999)

    ADS  Google Scholar 

  200. O.E. Nicotra, M. Baldo, G.F. Burgio, H.J. Schulze, Phys. Rev. D 74, 123001 (2006). https://doi.org/10.1103/PhysRevD.74.123001

    Article  ADS  Google Scholar 

  201. A. Li, X.R. Zhou, G.F. Burgio, H.J. Schulze, Phys. Rev. C 81, 025806 (2010). https://doi.org/10.1103/PhysRevC.81.025806

    Article  ADS  Google Scholar 

  202. G.F. Burgio, H.J. Schulze, Astron. Astrophys. 518, A17 (2010). https://doi.org/10.1051/0004-6361/201014308

    Article  ADS  Google Scholar 

  203. G. Martinon, A. Maselli, L. Gualtieri, V. Ferrari, Phys. Rev. D 90(2014). https://doi.org/10.1103/PhysRevD.90.064026. https://link.aps.org/doi/10.1103/PhysRevD.90.064026

  204. G. Camelio, L. Gualtieri, J.A. Pons, V. Ferrari, Phys. Rev. D 94(2), 024008 (2016). https://doi.org/10.1103/PhysRevD.94.024008

    Article  ADS  Google Scholar 

  205. J.J. Lu, Z.H. Li, G.F. Burgio, A. Figura, H.J. Schulze, Phys. Rev. C 100(2019). https://doi.org/10.1103/PhysRevC.100.054335. https://link.aps.org/doi/10.1103/PhysRevC.100.054335

  206. J. Roark, X. Du, C. Constantinou, V. Dexheimer, A.W. Steiner, J.R. Stone, Mon. Not. R. Astron. Soc. 486(4), 5441 (2019). https://doi.org/10.1093/mnras/stz1240

    Article  ADS  Google Scholar 

  207. S.S. Lenka, P. Char, S. Banik, J. Phys. G Nucl. Particle Phys. 46(10)(2019). https://doi.org/10.1088/1361-6471/ab36a2

  208. K.P. Nunna, S. Banik, D. Chatterjee, Astrophys. J. 896(2), 109 (2020). https://doi.org/10.3847/1538-4357/ab8f2c

    Article  ADS  Google Scholar 

  209. A.R. Raduta, M. Oertel, A. Sedrakian, Mon. Not. R. Astron. Soc. 499(1), 914 (2020). https://doi.org/10.1093/mnras/staa2491

    Article  ADS  Google Scholar 

  210. I. Bombaci, Astron. Astrophys. 305, 871 (1996)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge discussions with Fiorella Burgio and Stefan Typel. We thank Aurélien Pascal for providing us with the profiles in Fig. 25. We also thank the anonymous referee for constructive comments that significantly contributed to enhancing the manuscript’s quality. A.R.R. and F.N. acknowledge support from a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI, Project No. PN-III-P4-ID-PCE-2020-0293, within PNCDI III. This work has been partially funded by the European COST Action CA16214 PHAROS “The multi-messenger physics and astrophysics of neutron stars”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana R. Raduta.

Additional information

Communicated by Laura Tolos.

Appendix A

Appendix A

See Fig. 27.

Fig. 27
figure 27

Matter composition in terms of particle mass fractions and average mass and charge numbers of nuclei as predicted by HS(DD2), GRDF1(DD2) and GRDF2(DD2) for T=5 MeV (first two columns) and T=9 MeV (columns 3 and 4) and \(Y_e=0.5\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raduta, A.R., Nacu, F. & Oertel, M. Equations of state for hot neutron stars. Eur. Phys. J. A 57, 329 (2021). https://doi.org/10.1140/epja/s10050-021-00628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00628-z

Navigation