Skip to main content
Log in

Multiplicity characteristics of the produced shower particles in backward direction-target and projectile dependence

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present paper a detailed investigation of the multiplicity distribution of the produced shower particles in the backward hemisphere (\(\theta _{\mathrm {Lab}} \ge 90^{\circ }\)) in nuclear emulsion track detector has been carried out. The present study involves interactions of \(^{\mathrm {16}}\hbox {O}\) and \(^{\mathrm {32}}\hbox {S}\) projectiles with CNO, AgBr and composite emulsion target at 4.5 AGeV/c. We have compared our results with the results obtained from the analysis of modified Fritiof model. Present study reveals that the production of single shower particle is the most dominant production mode of shower particles in the backward direction. This probability increases with the increase of target mass. The percentage of events having backward shower particles remains almost independent of the projectile beam. But it increases with the increase of target size. Average multiplicity of the shower particles in the backward direction reflects a weaker dependence on the mass number of the projectile beam. Multiplicity distribution of backward shower particles for both experimental and modified Fritiof model can be described by an expression \(\mathrm {P}_{\mathrm {N}} = {\mathrm {P}_{\mathrm {s}}\mathrm {N}_{\mathrm {B}}}^{-{\uplambda }_{\mathrm {B}}}\). The fitting parameter \({\uplambda }_{\mathrm {B}}\) decreases as the target size increases. The decay constant has lower value for the heavier projectile. Higher order multiplicity moments and scaled variance of multiplicity distribution for the backward shower particles showed strong target dependence. Multiplicity distributions of the backward shower particles violate KNO scaling law. Modified Fritiof model failed to reproduce the various features of the multiplicity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. C. Aidala et al. (PHENIX Collaboration), Phys. Rev. C 101, 034910 (2020)

  2. A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 99, 054903 (2019)

  3. A. Adare (PHENIX Collaboration), Phys. Rev. C 99, 024903 (2019)

  4. S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 784, 82 (2018)

  5. R. Rath et al., J. Phys. G: Nucl. Part. Phys. 47, 055111 (2020)

    Article  ADS  Google Scholar 

  6. S. Mukherjee, J. Phys. G: Nucl. Part. Phys. 38, 124022 (2011)

    Article  ADS  Google Scholar 

  7. J. Adams et al., (STAR Collaboration), Nucl. Phys. A 757, 102 (2005)

  8. R. Singh et al., Adv. High Energy Phys (2013) (Article ID 761474)

  9. A. Bazavov et al., Phys. Rev. D 85, 054503 (2012)

    Article  ADS  Google Scholar 

  10. I. Arsene et al. (PHENIX Collaboration), Nucl. Phys. A 757, 1 (2005)

  11. K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  12. U. Heinz, J. Phys. A 42, 214003 (2009)

    Article  ADS  Google Scholar 

  13. P.M. Jacobs, A. Schmah (STAR Collaboration), Nucl. Phys. A 956, 641 (2016)

  14. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 052302 (2011)

  15. M. Przybycien (ATLAS Collaboration), Proc. of 37th International Conference on High Energy Physics (ICHEP 2014), 2nd-9th July 2014, Valencia, Spain. Nucl. Part. Phys. Proc. 1539, 273–275 (2016)

  16. J. Brewer et al., J. High Energy Phys. 02, 015 (2018)

    Article  ADS  Google Scholar 

  17. J. Adams et al., Phys. Rev. C 71, 064902 (2005)

    Article  ADS  Google Scholar 

  18. T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001)

    Article  ADS  Google Scholar 

  19. S. Ahmad et al., Int. J. Mod. Phy E 18, 1929 (2009)

    Article  ADS  Google Scholar 

  20. N.N.A. Abd Allah et al., Pram. J. Phys. 81, 287 (2013)

    Article  Google Scholar 

  21. M. El-Nadi et al., Eur. Phys. J. A 10, 177 (2001)

    Article  ADS  Google Scholar 

  22. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Eur. Phys. J. Plus 132, 229 (2017)

    Article  Google Scholar 

  23. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Int. J. Mod. Phys. E 26, 1750016 (2017)

    Article  ADS  Google Scholar 

  24. S. Fakhraddin et al., Adv. High Energy Phys. (2014 ) (article ID 403504)

  25. A. Jacholkowski et al. (NA57 Collaboration), J. Phys. Conf. Ser. 5, 64 (2005)

  26. A. M. Baldin et al., Sov. J. Nucl. Phys. 20, 629 (1976), Yad. Fiz. 20, 1201 (1975) (in Russian)

  27. L.S. Schroeder, S.A. Chessin, J.V. Geaga, J.Y. Grossiord, J.W. Harris, D.L. Hendrie, R. Treuhaft, K. Van Bibber, Phys. Rev. Lett. 43, 1787 (1979)

    Article  ADS  Google Scholar 

  28. L. Hui-Ling et al., Chin. Phys. C 33, 521 (2009)

    Article  ADS  Google Scholar 

  29. A. Abdelsalam, B.M. Badawy, M.E. Hafiz, Can. J. Phys. 90, 515 (2012)

    Article  ADS  Google Scholar 

  30. A. Abdelsalam, E.A. Shaat, N. Ali-Mossa, Z. Abou-Mousa, O.M. Osman, N. Rashed, W. Osman, B.M. Badawy, E. El-Falaky, J. Phys. G: Nucl. Part. Phys. 28, 1375 (2002)

    Article  ADS  Google Scholar 

  31. A. Abdelsalam, B.M. Badawy, M. Hafiz, J. Phys. G: Nucl. Part. Phys. 39, 105104 (2012)

    Article  ADS  Google Scholar 

  32. A. Abdelsalam, Z. Abou–Moussa, N. Rashed, B.M. Badawy, H.A. Amer, W. Osman, M.M. El–Ashmawy, N. Abdallah, Chin. Phys. C 39, 094001 (2005)

  33. A. Abdelsalam, B.M. Badawy, H.A. Amer, W. Osman, M.M. El-Ashmawy, N. Abdallah, Int. J. Mod. Phys. E 27, 1850026 (2018)

    Article  ADS  Google Scholar 

  34. A. Abdelsalam, M.S. El-Nagdy, B.M. Badawy, A. Saber, J. Phys. G. Nucl: Part. Phys. 47, 045103 (2020)

    Article  ADS  Google Scholar 

  35. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, J. Phys. G: Nucl. Part. Phys. 40, 025105 (2013)

    Article  ADS  Google Scholar 

  36. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Phys. Lett. B 726, 194 (2013)

    Article  ADS  Google Scholar 

  37. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, J. Phys. G: Nucl. Part. Phys. 41, 075106 (2014)

    Article  ADS  Google Scholar 

  38. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Eur. Phys J. A 52, 301 (2016)

    Article  ADS  Google Scholar 

  39. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Can. J. Phys. 95, 715 (2017)

    Article  ADS  Google Scholar 

  40. C.F. Powell, P.H. Fowler, D.H. Perkins, Study of elementary particles by the photographic method (Pergamon, Oxford, 1959), pp. 450–464 (and references therein)

  41. S. Bhattacharyya et al., Eur. Phys. Lett 126, 42001 (2019)

    Article  ADS  Google Scholar 

  42. S. Bhattacharyya, Int. J. Mod. Phys. E 29, 2050020 (2020)

    Article  ADS  Google Scholar 

  43. D. Ghosh, A. Deb, S. Bhattacharyya, U. Datta, J. Phys. G: Nucl. Part. Phys. 39, 105101 (2012)

    Article  ADS  Google Scholar 

  44. Z. Koba, H.B. Nielsen, P. Olesen, Nucl. Phys. B 40, 317 (1972)

    Article  ADS  Google Scholar 

  45. F.H. Liu, Y.A. Panebratesv, IL Nuovo Cim. A 111, 1219 (1998)

    ADS  Google Scholar 

  46. F.H. Liu, Chin. J. Phys. 41, 486 (2003)

    ADS  Google Scholar 

  47. F.H. Liu, Phys. Rev. C 62, 024613 (2000)

    Article  ADS  Google Scholar 

  48. Y. Yuan et al., Int. J. Mod. Phys. E 17, 1319 (2008)

    Article  ADS  Google Scholar 

  49. M.E. Nagdy, J. Phys. G: Nucl. Part. Phys. 28, 1251 (2002)

    Article  ADS  Google Scholar 

  50. S. Bhattacharyya et al., J. Phys. G: Nucl. Part. Phys. 39, 035101 (2012)

    Article  ADS  Google Scholar 

  51. B. Andersson, G. Gustafson, B. Nilsson-Almqvist, Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  52. B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  53. K. Abdel-Waged, V.V. Uzhinskii, J. Phys. G: Nucl. Part. Phys. 24, 1723 (1998)

    Article  ADS  Google Scholar 

  54. K.G. Boreskov, A.B. Kaidalov, S.T. Kiselev, N.Y. Smorodinskaya, Yad. Fiz. 53, 569 (1990)

    Google Scholar 

  55. K. Abdel-Waged, V. Uzhinskii, Phys. At. Nucl. 60, 828 (1997)

    Google Scholar 

  56. A.S. Galoyan, A. Polanski, V.V. Uzhinskii, (2000). arXiv:nucl-th/0010083v1 (4th Nov 2000)

  57. A.S. Galoyan et al., Phys. At. Nucl. 66, 836 (2003)

    Article  Google Scholar 

  58. M.I. Adamovich et al. (EMU01 Collaboration), J. Phys. G: Nucl. Part. Phys 22, 1469 (1996)

  59. M.I. Adamovich et al. (EMU01 Collaboration), Phys. Lett. B 227, 285 (1989)

  60. M.I. Adamovich et al. (EMU01 Collaboration), Phys. Lett. B 223, 262 (1989)

  61. A. Beiser, Rev. Mod. Phys. 24, 273 (1952)

    Article  ADS  Google Scholar 

  62. E. Dahl-Jensen, The properties of photographic emulsion, 1st CERN School of Physics, St. Cergue, Switzerland, 8–18 Apr 1962, pp. 129–150

Download references

Acknowledgements

The author remains grateful to Prof. Pavel Zarubin, JINR, Dubna, Russia for providing the required emulsion data. Dr. Bhattacharyya also acknowledges Prof. Dipak Ghosh, Department of Physics, Jadavpur University and Prof. Argha Deb Department of Physics, Jadavpur University, for their constant inspiration in the preparation of this manuscript. The author also acknowledges Prof. Maria Haiduc, retired scientist, Institute of space science, Bucharest, Romania for her whole hearted support and help to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnapratim Bhattacharyya.

Additional information

Communicated by Sailajananda Bhattacharya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S. Multiplicity characteristics of the produced shower particles in backward direction-target and projectile dependence. Eur. Phys. J. A 57, 164 (2021). https://doi.org/10.1140/epja/s10050-021-00468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00468-x

Navigation