Skip to main content
Log in

\({\varvec{\alpha }}\) clustering and neutron-skin thickness of carbon isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The interplay between the formation of neutron skin and \(\alpha \) cluster at the dilute surface of neutron-rich nuclei is one of the interesting subjects in the study of neutron-rich nuclei and nuclear clustering. A theoretical model has predicted that the growth of neutron skin will prevent the \(\alpha \) clustering at nuclear surface. Quite recently, this theoretical perspective, the suppression of \(\alpha \) clustering by the neutron-skin formation, was firstly confirmed experimentally in Sn isotopes as the reduction of the \((p,p\alpha )\) reaction cross section. Motivated by the novel discovery, in this work, we have investigated the relationship between the neutron-skin thickness and \(\alpha \) clustering in C isotopes. Based on the analysis by the antisymmetrized molecular dynamics, we show that the \(\alpha \) spectroscopic factor at nuclear exterior decreases in neutron-rich C isotopes, and the clustering suppression looks correlated with the growth of the neutron-skin thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Readers who need the data for Figs. 1–5 should contact the corresponding author, via e-mail.]

References

  1. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803015803 (2010)

    Article  ADS  Google Scholar 

  2. K. Hagel, R. Wada, L. Qin, J.B. Natowitz, S. Shlomo, A. Bonasera, G. Röpke, S. Typel, Z. Chen, M. Huang, J. Wang, H. Zheng, S. Kowalski, C. Bottosso, M. Barbui, M.R.D. Rodrigues, K. Schmidt, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. El Masri, Z. Majka, Phys. Rev. Lett. 108, 062702 (2012)

    Article  ADS  Google Scholar 

  3. S. Typel, Phys. Rev. C 89, 064321 (2014)

    Article  ADS  Google Scholar 

  4. K. Yoshida, K. Minomo, K. Ogata, Phys. Rev. C 94, 044604 (2016)

    Article  ADS  Google Scholar 

  5. T. Wakasa, K. Ogata, T. Noro, Prog. Part. Nucl. Phys. 96, 32 (2017)

    Article  ADS  Google Scholar 

  6. K. Yoshida, K. Ogata, Y. Kanada-En’Yo, Phys. Rev. C 98, 024614 (2018)

    Article  ADS  Google Scholar 

  7. K. Yoshida, Y. Chiba, M. Kimura, Y. Taniguchi, Y. Kanada-En’Yo, K. Ogata, Phys. Rev. C 100, 044601 (2019)

    Article  ADS  Google Scholar 

  8. J. Tanaka, Z. Yang, S. Typel, S. Adachi, S. Bai, P. van Beek, D. Beaumel, Y. Fujikawa, J. Han, S. Heil, S. Huang, A. Inoue, Y. Jiang, M. Knösel, N. Kobayashi, Y. Kubota, W. Liu, J. Lou, Y. Maeda, Y. Matsuda, K. Miki, S. Nakamura, K. Ogata, V. Panin, H. Scheit, F. Schindler, P. Schrock, D. Symochko, A. Tamii, T. Uesaka, V. Wagner, K. Yoshida, J. Zenihiro, T. Aumann, Science 371, 260 (2021)

    Article  ADS  Google Scholar 

  9. R.G. Lovas, R.J. Liotta, A. Insolia, K. Varga, D.S. Delion, Phys. Rep. 294, 265 (1998)

    Article  ADS  Google Scholar 

  10. C. Qi, R. Liotta, R. Wyss, Prog. Part. Nucl. Phys. 105, 214 (2019)

    Article  ADS  Google Scholar 

  11. W. von Oertzen, M. Freer, Y. Kanada-En’yo, Phys. Rep. 432, 43 (2006)

    Article  ADS  Google Scholar 

  12. Y. Kanada-En’yo, M. Kimura, A. Ono, Progress Theor. Exp. Phys. 2012, 1A202 (2012)

    Google Scholar 

  13. M. Kimura, T. Suhara, Y. Kanada-En’yo, Eur. Phys. J. A 52, 373 (2016)

    Article  ADS  Google Scholar 

  14. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)

    Article  ADS  Google Scholar 

  15. Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. C 67, 051306 (2003)

    Article  ADS  Google Scholar 

  16. P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, T. Yamada, Phys. Scr. 91, 23001 (2016)

    Article  ADS  Google Scholar 

  17. B. Zhou, A. Tohsaki, H. Horiuchi, Z. Ren, Phys. Rev. C 94, 044319 (2016)

    Article  ADS  Google Scholar 

  18. Y. Kanada-En’yo, M. Kimura, H. Horiuchi, C.R. Phys. 4, 497 (2003)

    Article  ADS  Google Scholar 

  19. J. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)

    Article  ADS  Google Scholar 

  20. M. Kimura, Phys. Rev. C 69, 044319 (2004)

    Article  ADS  Google Scholar 

  21. M. Kimura, R. Yoshida, M. Isaka, Progress Theor. Phys. 127, 287 (2012)

    Article  ADS  Google Scholar 

  22. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  23. Y. Chiba, M. Kimura, Progress Theor. Exp. Phys. 2017, 053D01 (2017)

    Google Scholar 

  24. N. Imai, H.J. Ong, N. Aoi, H. Sakurai, K. Demichi, H. Kawasaki, H. Baba, Z. Dombrádi, Z. Elekes, N. Fukuda, Z. Fülöp, A. Gelberg, T. Gomi, H. Hasegawa, K. Ishikawa, H. Iwasaki, E. Kaneko, S. Kanno, T. Kishida, Y. Kondo, T. Kubo, K. Kurita, S. Michimasa, T. Minemura, M. Miura, T. Motobayashi, T. Nakamura, M. Notani, T.K. Onishi, A. Saito, S. Shimoura, T. Sugimoto, M.K. Suzuki, E. Takeshita, S. Takeuchi, M. Tamaki, K. Yamada, K. Yoneda, H. Watanabe, M. Ishihara, Phys. Rev. Lett. 92, 062501 (2004)

    Article  ADS  Google Scholar 

  25. H.J. Ong, N. Imai, D. Suzuki, H. Iwasaki, H. Sakurai, T.K. Onishi, M.K. Suzuki, S. Ota, S. Takeuchi, T. Nakao, Y. Togano, Y. Kondo, N. Aoi, H. Baba, S. Bishop, Y. Ichikawa, M. Ishihara, T. Kubo, K. Kurita, T. Motobayashi, T. Nakamura, T. Okumura, Y. Yanagisawa, Phys. Rev. C 78, 014308 (2008)

    Article  ADS  Google Scholar 

  26. M. Petri, S. Paschalis, R.M. Clark, P. Fallon, A.O. MacChiavelli, K. Starosta, T. Baugher, D. Bazin, L. Cartegni, H.L. Crawford, M. Cromaz, U. Datta Pramanik, G. De Angelis, A. Dewald, A. Gade, G.F. Grinyer, S. Gros, M. Hackstein, H.B. Jeppesen, I.Y. Lee, S. McDaniel, D. Miller, M.M. Rajabali, A. Ratkiewicz, W. Rother, P. Voss, K.A. Walsh, D. Weisshaar, M. Wiedeking, B.A. Brown, C. Forssén, P. Navrátil, R. Roth, Physical Review C 86, 044329 (2012)

  27. P. Voss, T. Baugher, D. Bazin, R.M. Clark, H.L. Crawford, A. Dewald, P. Fallon, A. Gade, G.F. Grinyer, H. Iwasaki, A.O. MacChiavelli, S. McDaniel, D. Miller, M. Petri, A. Ratkiewicz, W. Rother, K. Starosta, K.A. Walsh, D. Weisshaar, C. Forssén, R. Roth, P. Navrátil, Phys. Rev. C 86, 011303 (2012)

    Article  ADS  Google Scholar 

  28. F. Ajzenberg-Selove, Nucl. Phys. Sect. A 523, 1 (1991)

  29. D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A 745, 155 (2004)

    Article  ADS  Google Scholar 

  30. J.H. Kelley, J.E. Purcell, C.G. Sheu, Nucl. Phys. A 968, 71 (2017)

    Article  ADS  Google Scholar 

  31. F. Ajzenberg-Selove, Nucl. Phys. Sect. A 460, 1 (1986)

    Article  ADS  Google Scholar 

  32. D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. Sect. A 595, 1 (1995)

    Article  ADS  Google Scholar 

  33. W. von Oertzen, Zeitschrift für Physik A Hadrons and Nuclei 354, 37 (1996)

    Article  ADS  Google Scholar 

  34. W. von Oertzen, Il Nuovo Cimento A 110, 895 (1997)

    Article  ADS  Google Scholar 

  35. I. Talmi, I. Unna, Phys. Rev. Lett. 4, 469 (1960)

    Article  ADS  Google Scholar 

  36. N. Itagaki, S. Hirose, T. Otsuka, S. Okabe, K. Ikeda, Phys. Rev. C 65, 6 (2002)

    Article  Google Scholar 

  37. Y. Kanada-En’yo, Phys. Rev. C 71, 014310 (2005)

    Article  ADS  Google Scholar 

  38. Y. Jiang, J.L. Lou, Y.L. Ye, Y. Liu, Z.W. Tan, W. Liu, B. Yang, L.C. Tao, K. Ma, Z.H. Li, Q.T. Li, X.F. Yang, J.Y. Xu, H.Z. Yu, J.X. Han, S.W. Bai, S.W. Huang, G. Li, H.Y. Wu, H.L. Zang, J. Feng, Z.Q. Chen, Y.D. Chen, Q. Yuan, J.G. Li, B.S. Hu, F.R. Xu, J.S. Wang, Y.Y. Yang, P. Ma, Q. Hu, Z. Bai, Z.H. Gao, F.F. Duan, L.Y. Hu, J.H. Tan, S.Q. Sun, Y.S. Song, H.J. Ong, D.T. Tran, D.Y. Pang, C.X. Yuan, Phys. Rev. C 101, 024601 (2020)

    Article  ADS  Google Scholar 

  39. Z. Elekes, Z. Dombrádi, A. Krasznahorkay, H. Baba, M. Csatlós, L. Csige, N. Fukuda, Z. Fülöp, Z. Gácsi, J. Gulyás, N. Iwasa, H. Kinugawa, S. Kubono, M. Kurokawa, X. Liu, S. Michimasa, T. Minemura, T. Motobayashi, A. Ozawa, A. Saito, S. Shimoura, S. Takeuchi, I. Tanihata, P. Thirolf, Y. Yanagisawa, K. Yoshida, Phys. Lett. Sect. B 586, 34 (2004)

    Article  ADS  Google Scholar 

  40. V. Choudhary, W. Horiuchi, M. Kimura, R. Chatterjee, Phys. Rev. C 102, 034619 (2020)

    Article  ADS  Google Scholar 

  41. S. Karataglidis, K. Murulane, Phys. Rev. C 101, 064316 (2020)

    Article  ADS  Google Scholar 

  42. G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, Z. Ren, A. Tohsaki, C. Xu, T. Yamada, B. Zhou, Phys. Rev. C 90, 034304 (2014)

    Article  ADS  Google Scholar 

  43. K. Ikeda, N. Takigawa, H. Horiuchi, Progress Theor. Phys. Supplement E68, 464 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The ECT* Trento has supported this work and this infrastructure is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 824093. We also acknowledge that this work was also supported by the JSPS KAKENHI Grant No. 19K03859 and by the COREnet program at RCNP Osaka University. Part of the numerical calculations were performed using Oakforest-PACS at the Center for Computational Sciences in the University of Tsukuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kimura.

Additional information

Communicated by David Blaschke.

Appendix A: Coulomb interaction

Appendix A: Coulomb interaction

To reduce the computational cost, the Coulomb interaction is approximated by a sum of seven Gaussians as

$$\begin{aligned} \frac{1}{r} \simeq \sum _{n=1}^7 c_n\sqrt{\bar{\nu }} \exp (-\frac{\bar{\nu }r^2}{\gamma _n^2}),\quad \bar{\nu } = (\nu _x\nu _y\nu _z)^{1/3}, \end{aligned}$$
(A.1)

where the dimensionless parameters \(c_n\) and \(\gamma _n\) are listed in Table 2. The parameters are determined to yield approximate values of the Coulomb interaction when the matrix elements of Eq. (A.1) are calculated from the nucleon Gaussian wave packets.

Table 2 The dimensionless parameters for an approximate expression of the Coulomb interaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Suzuki, Y., He, J. et al. \({\varvec{\alpha }}\) clustering and neutron-skin thickness of carbon isotopes. Eur. Phys. J. A 57, 157 (2021). https://doi.org/10.1140/epja/s10050-021-00465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00465-0

Navigation