Skip to main content
Log in

Phase diagram for strongly interacting matter in the presence of a magnetic field using the Polyakov–Nambu–Jona-Lasinio model with magnetic field dependent coupling strengths

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the phase diagram for strongly interacting matter using the ’t Hooft determinant extended Nambu–Jona-Lasinio model with a Polyakov loop in the light and strange quark sectors (up, down and strange) focusing on the effect of a magnetic field dependence of the coupling strengths of these interactions. This dependence was obtained so as to reproduce recent lattice QCD results for the magnetic field dependence of the quarks dynamical masses. A finite magnetic field is known to induce several additional first-order phase transition lines with the respective Critical End Points (CEP) in the temperature-quark chemical potential phase diagram when compared to the zero magnetic field case. A study of the magnetic field dependence in the range eB = 0–0.6 \(\mathrm {GeV}^2\) of the location of these CEPs reveals that the initial one as well as several of the new ones only survive up to a critical magnetic field. Only two remain in the upper limit of the studied magnetic field strength. A comparison of the results obtained with versions of the model with and without Polyakov loop is also done. We also found that the inclusion of the magnetic field dependence on the coupling strengths, while not changing the qualitative features of the phase diagram, affects the location of these CEPs. The comparison of results with and without a regularization cutoff in the medium part of the integrals does not show a significant change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The article has no data, as it is a theoretical paper.]

Notes

  1. The existence of several first-order phase transitions at zero temperature in the presence of an external magnetic field for the one and two flavor NJL models was reported in [35]. At finite temperatures an extensive study of the two flavor case can be seen in [36].

References

  1. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561(7723), 321 (2018). https://doi.org/10.1038/s41586-018-0491-6

    Article  ADS  Google Scholar 

  2. L. Adamczyk et al., Phys. Rev. C 96(4), 044904 (2017). https://doi.org/10.1103/PhysRevC.96.044904

    Article  ADS  Google Scholar 

  3. Y. Yang, Nucl. Phys. A 1005, 121758 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121758

    Article  Google Scholar 

  4. C. Yang, Nucl. Phys. A 967, 800 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.042

    Article  ADS  Google Scholar 

  5. P. Senger, J. Phys. Conf. Ser. 798(1), 012062 (2017). https://doi.org/10.1088/1742-6596/798/1/012062

    Article  Google Scholar 

  6. P. Senger, JPS Conf. Proc. 32, 010092 (2020). https://doi.org/10.7566/JPSCP.32.010092

    Article  Google Scholar 

  7. V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov, Nucl. Phys. A 967, 884 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.031

    Article  ADS  Google Scholar 

  8. Y. Aoki, G. Endrődi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120

    Article  ADS  Google Scholar 

  9. A. Bazavov et al., Phys. Rev. D 90, 094503 (2014). https://doi.org/10.1103/PhysRevD.90.094503

    Article  ADS  Google Scholar 

  10. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 09, 073 (2010). https://doi.org/10.1007/JHEP09(2010)073

    Article  ADS  Google Scholar 

  11. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014). https://doi.org/10.1016/j.physletb.2014.01.007

    Article  ADS  Google Scholar 

  12. J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014). https://doi.org/10.1088/1742-6596/509/1/012019

    Article  Google Scholar 

  13. A. Dumitru, R.D. Pisarski, D. Zschiesche, Phys. Rev. D 72, 065008 (2005). https://doi.org/10.1103/PhysRevD.72.065008

    Article  ADS  Google Scholar 

  14. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961). https://doi.org/10.1103/PhysRev.124.246

    Article  ADS  Google Scholar 

  15. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). https://doi.org/10.1103/PhysRev.122.345

    Article  ADS  Google Scholar 

  16. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992). https://doi.org/10.1103/RevModPhys.64.649

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Hatsuda, T. Kunihiro, Phys. Rept. 247, 221 (1994). https://doi.org/10.1016/0370-1573(94)90022-1

    Article  ADS  Google Scholar 

  18. K. Fukushima, Phys. Lett. B 591, 277 (2004). https://doi.org/10.1016/j.physletb.2004.04.027

    Article  ADS  Google Scholar 

  19. E. Megias, E. Ruiz Arriola, L.L. Salcedo, Phys. Rev. D 69, 116003 (2004). https://doi.org/10.1103/PhysRevD.69.116003

    Article  ADS  Google Scholar 

  20. E. Megias, E. Ruiz Arriola, L. Salcedo, Phys. Rev. D 74, 065005 (2006). https://doi.org/10.1103/PhysRevD.74.065005

    Article  ADS  Google Scholar 

  21. S. Roessner, C. Ratti, W. Weise, Phys. Rev. D 75, 034007 (2007). https://doi.org/10.1103/PhysRevD.75.034007

    Article  ADS  Google Scholar 

  22. R. Câmara Pereira, J. Moreira, P. Costa, Eur. Phys. J. A 56(8), 214 (2020). https://doi.org/10.1140/epja/s10050-020-00223-8

    Article  ADS  Google Scholar 

  23. A.A. Osipov, B. Hiller, J. da Providencia, Phys. Lett. B 634, 48 (2006). https://doi.org/10.1016/j.physletb.2006.01.008

    Article  ADS  Google Scholar 

  24. A.A. Osipov, B. Hiller, A.H. Blin, J. da Providencia, Ann. Phys. 322, 2021 (2007). https://doi.org/10.1016/j.aop.2006.08.004

    Article  ADS  Google Scholar 

  25. J. Moreira, J. Morais, B. Hiller, A.A. Osipov, A.H. Blin, Phys. Rev. D 91, 116003 (2015). https://doi.org/10.1103/PhysRevD.91.116003

    Article  ADS  Google Scholar 

  26. A. Osipov, B. Hiller, A. Blin, Eur. Phys. J. A 49, 14 (2013). https://doi.org/10.1140/epja/i2013-13014-y

    Article  ADS  Google Scholar 

  27. A. Osipov, B. Hiller, A. Blin, Phys. Rev. D 88(5), 054032 (2013). https://doi.org/10.1103/PhysRevD.88.054032

    Article  ADS  Google Scholar 

  28. V. Skokov, AYu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570

    Article  ADS  Google Scholar 

  29. D.P. Menezes, M. Benghi Pinto, S.S. Avancini, A. Perez Martinez, C. Providência, Phys. Rev. C 79, 035807 (2009). https://doi.org/10.1103/PhysRevC.79.035807

    Article  ADS  Google Scholar 

  30. P. Costa, M. Ferreira, D.P. Menezes, J. Moreira, C. Providência, Phys. Rev. D 92(3), 036012 (2015). https://doi.org/10.1103/PhysRevD.92.036012

    Article  ADS  Google Scholar 

  31. P. Costa, Phys. Rev. D 93(11), 114035 (2016). https://doi.org/10.1103/PhysRevD.93.114035

    Article  ADS  Google Scholar 

  32. P. Costa, M. Ferreira, H. Hansen, D.P. Menezes, C. Providência, Phys. Rev. D 89(5), 056013 (2014). https://doi.org/10.1103/PhysRevD.89.056013

    Article  ADS  Google Scholar 

  33. M. Ferreira, P. Costa, C. Providência, Phys. Rev. D 97(1), 014014 (2018). https://doi.org/10.1103/PhysRevD.97.014014

    Article  ADS  Google Scholar 

  34. M. Ferreira, P. Costa, C. Providência, Phys. Rev. D 98(3), 034003 (2018). https://doi.org/10.1103/PhysRevD.98.034003

    Article  ADS  Google Scholar 

  35. D. Ebert, K.G. Klimenko, M.A. Vdovichenko, A.S. Vshivtsev, Phys. Rev. D 61, 025005 (2000). https://doi.org/10.1103/PhysRevD.61.025005

    Article  ADS  Google Scholar 

  36. R.Z. Denke, M.B. Pinto, Phys. Rev. D 88(5), 056008 (2013). https://doi.org/10.1103/PhysRevD.88.056008

    Article  ADS  Google Scholar 

  37. F. Bruckmann, G. Endrődi, T.G. Kovacs, JHEP 04, 112 (2013). https://doi.org/10.1007/JHEP04(2013)112

    Article  ADS  Google Scholar 

  38. G.S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S.D. Katz, S. Krieg, A. Schäfer, K.K. Szabo, JHEP 02, 044 (2012). https://doi.org/10.1007/JHEP02(2012)044

    Article  ADS  Google Scholar 

  39. G.S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S.D. Katz, A. Schäfer, Phys. Rev. D 86, 071502 (2012). https://doi.org/10.1103/PhysRevD.86.071502

    Article  ADS  Google Scholar 

  40. G. Endrődi, JHEP 07, 173 (2015). https://doi.org/10.1007/JHEP07(2015)173

    Article  ADS  Google Scholar 

  41. G. Endrődi, G. Markó, JHEP 08, 036 (2019). https://doi.org/10.1007/JHEP08(2019)036

    Article  ADS  Google Scholar 

  42. J. Moreira, P. Costa, T.E. Restrepo, Phys. Rev. D 102(1), 014032 (2020). https://doi.org/10.1103/PhysRevD.102.014032

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Ferreira, P. Costa, D.P. Menezes, C. Providência, N. Scoccola, Phys. Rev. D89(1), 016002 (2014). https://doi.org/10.1103/PhysRevD.89.016002, https://doi.org/10.1103/PhysRevD.89.019902.[Addendum: Phys. Rev.D89,no.1,019902(2014)]

  44. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89(11), 116011 (2014). https://doi.org/10.1103/PhysRevD.89.116011

    Article  ADS  Google Scholar 

  45. R. Farias, V. Timoteo, S. Avancini, M. Pinto, G. Krein, Eur. Phys. J. A 53(5), 101 (2017). https://doi.org/10.1140/epja/i2017-12320-8

    Article  ADS  Google Scholar 

  46. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006). https://doi.org/10.1103/PhysRevD.73.014019

    Article  ADS  Google Scholar 

  47. C. Ratti, S. Roessner, M.A. Thaler, W. Weise, Eur. Phys. J. C 49, 213 (2007). https://doi.org/10.1140/epjc/s10052-006-0065-x

    Article  ADS  Google Scholar 

  48. O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys. Lett. B 543, 41 (2002). https://doi.org/10.1016/S0370-2693(02)02415-2

    Article  ADS  Google Scholar 

  49. Y. Aoki et al., JHEP 06, 088 (2009). https://doi.org/10.1088/1126-6708/2009/06/088

    Article  ADS  Google Scholar 

  50. D. Menezes, M. Benghi Pinto, S. Avancini, C. Providência, Phys. Rev. C 80, 065805 (2009). https://doi.org/10.1103/PhysRevC.80.065805

    Article  ADS  Google Scholar 

  51. S.S. Avancini, D.P. Menezes, C. Providência, Phys. Rev. C 83, 065805 (2011). https://doi.org/10.1103/PhysRevC.83.065805

    Article  ADS  Google Scholar 

  52. S.S. Avancini, R.L.S. Farias, M.B. Pinto, T.E. Restrepo, W.R. Tavares (2020). https://doi.org/10.1103/PhysRevD.103.056009

  53. J. Moreira, B. Hiller, A. Osipov, A. Blin, Int. J. Mod. Phys. A 27, 1250060 (2012). https://doi.org/10.1142/S0217751X12500601

    Article  ADS  Google Scholar 

  54. R. Câmara Pereira, Chiral transition and deconfinement in hybrid stars. Master’s thesis, Coimbra U. (2016)

Download references

Acknowledgements

This work was supported by a research grant under Project No. PTDC/FIS-NUC/29912/2017, funded by national funds through FCT (Fundação para a Ciência e a Tecnologia, I.P, Portugal) and co-financed by the European Regional Development Fund (ERDF) through the Portuguese Operational Program for Competitiveness and Internationalization, COMPETE 2020, by the project CERN/FIS-PAR/0040/2019 and by national funds from FCT, within the Projects No. UIDB/04564/2020 and No. UIDP/04564/2020. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-(CAPES-Brazil)-Finance Code 001. T.E.R. thanks the support and hospitality of CFisUC and acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) for PhD grants at different periods of time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Moreira.

Additional information

Communicated by Carsten Urbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, J., Costa, P. & Restrepo, T.E. Phase diagram for strongly interacting matter in the presence of a magnetic field using the Polyakov–Nambu–Jona-Lasinio model with magnetic field dependent coupling strengths. Eur. Phys. J. A 57, 123 (2021). https://doi.org/10.1140/epja/s10050-021-00440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00440-9

Navigation