Skip to main content

Advertisement

Log in

A new formalism of nuclear matter: tensor-optimized Fermi sphere method

Power-series-type correlated wave function and linked-cluster expansion theorem

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A new formalism of nuclear matter, called “tensor-optimized Fermi sphere (TOFS) method”, is developed to handle the nuclear matter using a bare interaction among nucleons. In this formalism, the correlated nuclear matter wave function is taken to be a power-series type of the correlation function F, \(\varPsi _{N}=[\sum _{n=0}^{N} (1/n!)F^{n}]\varPhi _{0}\), where F can induce central, spin-isospin, tensor, spin-orbit, etc. correlation, and \(\varPhi _{0}\) is the uncorrelated Fermi-gas wave function. The validity of our formalism is based on a linked-cluster expansion theorem established in the TOFS theory with Hermitian form. The connection between \(\varPsi _{N}\) and an exponential type correlated nuclear matter wave function, \(\varPsi _{ex}=\exp (F) \varPhi _{0}\), is emphasized to lead to the theorem. The framework of TOFS is a variational method, in which the correlation function F is determined by minimizing the energy per particle in nuclear matter with respect to the nuclear matter wave function \(\varPsi _{N}\). The first application of the TOFS theory is performed to study the property of nuclear matter using the Argonne V4’ NN potential. It is found that the density dependence of the energy per particle in nuclear matter is reasonably reproduced up to the nuclear matter density \(\rho \simeq 0.20\) \(\hbox {fm}^{-3}\), in comparison with other methods such as the Brueckner-Hartree-Fock (BHF) approach. We discuss the explicit contributions of many-body terms in the total energy, and indicate the importance of higher-body terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The relevant data are given in the tables. They can also be obtained from the author.]

References

  1. K.A. Brueckner, C.A. Levinson, Phys. Rev. 97, 1344 (1955)

    Article  ADS  Google Scholar 

  2. K.A. Brueckner, Phys. Rev. 100, 36 (1955)

    Article  ADS  Google Scholar 

  3. K.A. Brueckner, J.L. Gammel, Phys. Rev. 109, 1023 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  4. H.A. Bethe, Phys. Rev. 103, 1353 (1956)

    Article  ADS  Google Scholar 

  5. H.A. Bethe, J. Goldstone, Proc. Roy. Soc. A238, 551 (1957)

    ADS  Google Scholar 

  6. J. Goldstone, Proc. Roy. Soc. A239, 267 (1957)

    ADS  MathSciNet  Google Scholar 

  7. C. Mahaux, R. Sartor, in Nuclear Matter and Heavy Ion Collisions, edited by M. Soyeur et al., NATO Advanced Study Institute Ser. B, Vol. 205 (Plenum Press,New York, 1989)

  8. M. Baldo, I. Bombaci, L.S. Ferreira, G. Giansiracusa, U. Lombardo, Phys. Rev. C 43, 2605 (1991)

    Article  ADS  Google Scholar 

  9. H.-J. Schulze, J. Cugnon, A. Lejeune, M. Baldo, U. Lombardo, Phys. Rev. C 52, 2785 (1995)

    Article  ADS  Google Scholar 

  10. B.D. Day, Rev. Mod. Phys. 39, 719 (1967). (and references therein)

  11. B.D. Day, in Brueckner-Bethe Calculations of Nuclear Matter, Proceedings of the International School of Physics “Enrico Fermi” Course LXXIX, edited by A. Molinari (Editrice Compositori, Bologna, 1983), pp. 1-72

  12. H.Q. Song, M. Baldo, G. Giansiracusa, U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998)

    Article  ADS  Google Scholar 

  13. M. Baldo, G. Giansiracusa, U. Lombardo, H.Q. Song, Phys. Lett. B 473, 1 (2000)

    Article  ADS  Google Scholar 

  14. M. Baldo, A. Fiasconaro, H.Q. Song, G. Giansiracusa, U. Lombardo, Phys. Rev. C 65, 017303 (2001)

    Article  ADS  Google Scholar 

  15. R. Sartor, Phys. Rev. C 73, 034307 (2006)

    Article  ADS  Google Scholar 

  16. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)

    Article  ADS  Google Scholar 

  17. T. Frick, H. Müther, A. Rios, A. Polls, A. Ramos, Phys. Rev. C 71, 014313 (2005)

    Article  ADS  Google Scholar 

  18. V. Somà, P. Bozėk, Phys. Rev. C 74, 045809 (2006)

    Article  ADS  Google Scholar 

  19. V. Somà, P. Bozėk, Phys. Rev. C 78, 054003 (2008)

    Article  ADS  Google Scholar 

  20. A. Rios, A. Polls, I. Vidaña, Phys. Rev. C 79, 025802 (2009)

    Article  ADS  Google Scholar 

  21. S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, Phys. Rev. Lett. 98, 102503 (2007)

    Article  ADS  Google Scholar 

  22. S. Gandolfi, A.Y. Illarionov, K.E. Schmidt, F. Pederiva, S. Fantoni, Phys. Rev. C 79, 054005 (2009)

    Article  ADS  Google Scholar 

  23. J. Carlson, J. Morales, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 68, 025802 (2003)

    Article  ADS  Google Scholar 

  24. F. Iwamoto, M. Yamada, Prog. Theor. Phys. 17, 543 (1957)

    Article  ADS  Google Scholar 

  25. S. Fantoni, S. Rosati, Nuovo Cimento A 10, 145 (1972)

    Article  ADS  Google Scholar 

  26. S. Fantoni, S. Rosati, Nuovo Cimento A 20, 179 (1974)

    Article  ADS  Google Scholar 

  27. S. Fantoni, S. Rosati, Nuovo Cimento A 43, 413 (1978)

    Article  ADS  Google Scholar 

  28. V.R. Pandharipande, R.B. Wiringa, Rev. Mod. Phys. 51, 821 (1979)

    Article  ADS  Google Scholar 

  29. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  30. G. Baardsen, A. Ekström, G. Hagen, M. Hjorth-Jensen, Phys. Rev. C 88, 054312 (2013)

    Article  ADS  Google Scholar 

  31. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rep. Prog. Phys. 77, 096302 (2014)

    Article  ADS  Google Scholar 

  32. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  33. M. Baldo, A. Polls, A. Rios, H.-J. Schulze, I. Vidaña, Phys. Rev. C 86, 064001 (2012)

    Article  ADS  Google Scholar 

  34. T. Yamada, Ann. Phys. 403, 1 (2019)

    Article  ADS  Google Scholar 

  35. T. Yamada, T. Myo, H. Toki, H. Horiuchi, K. Ikeda, Prog. Theor. Exp. Phys. 2019, 113D03 (2019)

  36. T. Myo, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, Prog. Theor. Exp. Phys. 2015, 073D02 (2015)

    Article  Google Scholar 

  37. T. Myo, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, Phys. Lett. B 769, 213 (2017)

    Article  ADS  Google Scholar 

  38. G. Có, A. Fabrocini, S. Fantoni, Nucl. Phys. A 568, 73 (1994)

    Article  ADS  Google Scholar 

  39. F. Arias de Saavedra, C. Bisconti, G. Có, A. Fabrocinic, Phys. Rep. 450, 1 (2007)

    Article  ADS  Google Scholar 

  40. H. Kümmel, H.K. Lührmann, J.G. Zabolitzky, Phys. Rep. 36, 1 (1978)

    Article  ADS  Google Scholar 

  41. R. Barlett, Ann. Rev. Phys. Chem. 32, 359 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Profs. T. Myo, H. Toki, H. Horiuchi, and K. Ikeda for useful discussions. This work was partially supported by the JSPS KAKENHI Grans No. 26400283. The ECT* Trento has supported this work and this infrastructure is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement No. 824093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiichi Yamada.

Additional information

Communicated by David Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, T. A new formalism of nuclear matter: tensor-optimized Fermi sphere method. Eur. Phys. J. A 57, 73 (2021). https://doi.org/10.1140/epja/s10050-021-00383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00383-1

Navigation