Skip to main content
Log in

Exact solution of spherical mean-field plus multi-pair interaction model with two non-degenerate j-orbits

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The exact solution of spherical mean-field plus multi-pair interaction model with two non-degenerate j-orbits, which is an extension of the widely used standard (two-body) pairing model, is derived based on the Bethe–Richardson–Gaudin approach. The Bethe–Richardson–Gaudin equations in determining eigenstates and the corresponding eigen-energies of the model are provided and exemplified with up to three-pair interactions. With a suitable parameterization of the overall multi-pair interaction strengths, the model with one adjustable parameter and valence nucleons confined in the \(1d_{5/2}\) and \(0g_{7/2}\) orbits is applied to fit binding energies of \(^{102{\text {--}}112}\)Sn. It is shown that the ground-state occupation probabilities of nucleon pairs calculated from this model and those from the standard pairing model are almost the same with perfect ground-state overlap of the two models. A noticeable feature of the multi-pair interactions is that the even–odd staggering of pairing interaction strength appearing in the standard pairing model due to the Pauli-blocking is suppressed. As the result, the pairing interaction strength of the model only depends on the number of valence nucleon pairs in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Theoretical data have already been provided in this paper, while all experimental data have been taken from the website https://www-nds.iaea.org.]

References

  1. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  Google Scholar 

  2. M. Randeria, J.M. Duan, L.Y. Shieh, Phys. Rev. Lett. 62(981), 981 (1989)

    ADS  Google Scholar 

  3. D.W. Cooper, J.S. Batchelder, M.A. Taubenblatt, J. Coll. Int. Sci. 144, 201 (1991)

    ADS  Google Scholar 

  4. K.K. Gomes, A.N. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani, Nature 447, 569–572 (2007)

    ADS  Google Scholar 

  5. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Google Scholar 

  6. A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. 110, 936 (1958)

    ADS  Google Scholar 

  7. S.T. Belyaev, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 31, 11 (1959)

    Google Scholar 

  8. M. Hasegawa, S. Tazaki, Phys. Rev. C 47, 188 (1993)

    ADS  Google Scholar 

  9. G.D. Dans, A. Klein, Phys. Rev. 143, 735 (1966)

    ADS  Google Scholar 

  10. A. Covello, E. Salusti, Phys. Rev. 162, 859 (1967)

    ADS  Google Scholar 

  11. M. Bishari, I. Unna, A. Mann, Phys. Rev. C 3, 1715 (1971)

    ADS  Google Scholar 

  12. J.Y. Zeng, C.S. Cheng, Nucl. Phys. A 405, 1 (1983)

    ADS  Google Scholar 

  13. J.Y. Zeng, C.S. Cheng, Nucl. Phys. A 411, 49 (1984)

    ADS  Google Scholar 

  14. J.Y. Zeng, C.S. Cheng, Nucl. Phys. A 414, 253 (1984)

    ADS  Google Scholar 

  15. H. Molique, J. Dudek, Phys. Rev. C 56, 1795 (1997)

    ADS  Google Scholar 

  16. A. Volya, B.A. Brown, V. Zelevinsky, Phys. Lett. B 509, 37 (2001)

    ADS  Google Scholar 

  17. H.C. Pradhan, Y. Nogami, J. Law, Nucl. Phys. A 201, 357 (1973)

    ADS  Google Scholar 

  18. H.J. Mang, Phys. Rep. 18, 325 (1975)

    ADS  Google Scholar 

  19. A.K. Kerman, R.D. Lawson, Phys. Rev. 124, 162 (1961)

    ADS  Google Scholar 

  20. V. Zelevinsky, A. Volya, Phys. Atom. Nuclei 66, 1781 (2003)

    ADS  Google Scholar 

  21. M. Gaudin, J. Phys. 37, 1087 (1976)

    Google Scholar 

  22. R.W. Richardson, Phys. Lett. 3, 277 (1963)

    ADS  Google Scholar 

  23. R.W. Richardson, Phys. Lett. 5, 82 (1963)

    ADS  Google Scholar 

  24. R.W. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964)

    Google Scholar 

  25. R.W. Richardson, N. Sherman, Nucl. Phys. 52, 253 (1964)

    Google Scholar 

  26. J. Dukelsky, S. Pittel, G. Sierra, Rev. Mod. Phys. 76, 643 (2004)

    ADS  Google Scholar 

  27. F. Pan, L. Bao, L. Zhai, X. Cui, J.P. Draayer, J. Phys. A Math. Theor. 44, 395305 (2011)

    Google Scholar 

  28. X. Guan, K.D. Launey, M. Xie, L. Bao, F. Pan, J.P. Draayer, Phys. Rev. C 86, 024313 (2012)

    ADS  Google Scholar 

  29. X. Guan, K.D. Launey, M. Xie, L. Bao, F. Pan, J.P. Draayer, Comp. Phys. Commun. 185, 2714 (2014)

    ADS  Google Scholar 

  30. C. Qi, T. Chen, Phys. Rev. C 92, 051304(R) (2015)

    ADS  Google Scholar 

  31. F. Pan, J.P. Draayer, W.E. Ormand, Phys. Lett. B 422, 1 (1998)

    ADS  MathSciNet  Google Scholar 

  32. A.B. Balantekin, Y. Pehlivan, Phys. Rev. C 76, 051001 (R) (2007)

    ADS  Google Scholar 

  33. S.M.A. Rombouts, J. Dukelsky, G. Ortiz, Phys. Rev. B 82, 224510 (2010)

    ADS  Google Scholar 

  34. P.W. Claeys, S. De Baerdemacker, M. Van Raemdonck, D. Van Neck, Phys. Rev. B 91, 155102 (2015)

    ADS  Google Scholar 

  35. L. Dai, F. Pan, J.P. Draayer, Nucl. Phys. A 957, 51 (2017)

    ADS  Google Scholar 

  36. F. Pan, D. Zhou, L. Dai, J.P. Draayer, Phys. Rev. C 95, 034308 (2017)

    ADS  Google Scholar 

  37. F. Pan, S. Yuan, Yingwen He, Yunfeng Zhang, Siyu Yang, J.P. Draayer, Nucl. Phys. A 984, 68 (2019)

    ADS  Google Scholar 

  38. F. Pan, D. Zhou, Y. He, S. Yang, Y. Zhang, J.P. Draayer, Phys. Lett. B 795, 165 (2019)

    ADS  MathSciNet  Google Scholar 

  39. D. Bonatsos, C. Daskaloyannis, Phys. Lett. B 278, 1 (1999)

    ADS  Google Scholar 

  40. S.S. Sharma, Phys. Rev. C 46, 904 (1992)

    ADS  Google Scholar 

  41. F. Pan, V.G. Gueorguiev, J.P. Draayer, Phys. Rev. Lett. 92, 112503 (2004)

    ADS  Google Scholar 

  42. F. Pan, X. Ding, K.D. Launey, H. Li, X. Xu, J.P. Draayer, Nucl. Phys. A 947, 234 (2016)

    ADS  Google Scholar 

  43. F. Pan, J.P. Draayer, Phys. Lett. B 451, 1 (1999)

    ADS  Google Scholar 

  44. G. Ortiz, R. Somma, J. Dukelsky, S. Rombouts, Nucl. Phys. B 707, 421 (2005)

    ADS  Google Scholar 

  45. P. Barmettler, D. Fioretto, V. Gritsev, Europhys. Lett. 104, 10004 (2013)

    ADS  Google Scholar 

  46. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

  47. X. Guan, K.D. Launey, J.-Z. Gu, F. Pan, J.P. Draayer, Phys. Rev. C 88, 044325 (2013)

    ADS  Google Scholar 

  48. R.C. Nayak, J.M. Pearson, Phys. Rev. C 52, 2254 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

Support from the National Natural Science Foundation of China (11675071), the Liaoning Provincial Universities Overseas Training Program (2019-46), the U. S. National Science Foundation (OIA-1738287 and ACI-1713690), U. S. Department of Energy (DE-SC0005248), the Southeastern Universities Research Association, and the LSU-LNNU joint research program (9961) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Pan.

Additional information

Communicated by Mark Caprio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Li, D., Cui, S. et al. Exact solution of spherical mean-field plus multi-pair interaction model with two non-degenerate j-orbits. Eur. Phys. J. A 56, 78 (2020). https://doi.org/10.1140/epja/s10050-020-00084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00084-1

Navigation