Skip to main content
Log in

Resonance parameters of Gd isotopes derived from capture measurements at GELINA

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Neutron capture yields for \(^{{155}}\hbox {Gd}\), \(^{{156}}\hbox {Gd}\), \(^{{157}}\hbox {Gd}\), \(^{{158}}\hbox {Gd}\), and \(^{{160}}\hbox {Gd}\) were determined applying the total energy detection principle technique using four \(\hbox {C}_{{6}}\hbox {D}_{{6}}\) liquid scintillators and a \(^{{10}}\hbox {B}\)-loaded ionization chamber. Time-of-flight experiments were carried out at a 30 m flight path station of the GELINA facility using enriched samples. Parameters for resonances in the energy region between 5 and 500 eV were obtained from a resonance shape analysis with REFIT. Resonance integrals for \(^{{155}}\hbox {Gd}\) and \(^{{157}}\hbox {Gd}\) derived from the parameters are 1511 (25) b and 801 (19) b, respectively. Average level spacings, average radiation widths and neutron strength functions were derived. The results were compared with data that are reported in the literature and recommended in evaluated data libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data used in this paper are deposited in the EXFOR library and the data generated during this study will be deposited in the same library.]

References

  1. S.F. Mughabghab, Neutron cross sections: Neutron Resonance Parameters and Thermal Cross Sections Part B: \(\text{Z}=61\)-100 (Academic press, INC., New York, 1984)

  2. S.F. Mughabghab, Atlas of Neutron Resonances (Elsevier, Amsterdam, 2006)

    Google Scholar 

  3. F. Rocchi, A. Gugliemelli, D.M. Catelluccio, C. Massimi, Eur. Phys. J. Nucl. Sci. Technol. 3, 21 (2017)

    Google Scholar 

  4. T. Matsumoto, Phys. Med. Biol. 37, 155 (1992)

    Article  Google Scholar 

  5. G.A. Abdullaeva, Y.N. Koblok, G.A. Kulabdullaev, A.A. Kim, G.T. Dzhuraeva, A.F. Nebesnyi, S.N. Saitdzhanov, At. Energ. 115, 201 (2014)

    Article  Google Scholar 

  6. K. Wisshak, F. Voss, F. Käppeler, K. Guber, L. Kazakov, N. Kornilov, M. Uhl, G. Reffo, Phys. Rev. C 52, 2762 (1995)

    Article  ADS  Google Scholar 

  7. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  8. C. Massimi, F. Mingrone, S. Cristallo, E. Berthoumieux, D.M. Castelluccio, N. Colonna, M. Diakaki, R. Dressler, E. Dupont, F. Ginsing, S.Lo Moo, P.M. Milazzo, A. Musumarra, D. Schumann, G. Tagliente, G. Vannini, V. Variale, Measurement of the neutron capture cross section of gadolinium even isotopes relevant to Nuclear Astrophysics, CERN-INTC-2015-030, CERN (Geneva, 2015)

  9. T.L. Sanders, R.M. Westfall, Nucl. Sci. Eng. 104, 66 (1990)

    Article  Google Scholar 

  10. J.C. Wagner, C.V. Parks, Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analysis, Report NUREG/CR-6781, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2003)

  11. N. Soppera, M. Bossant, E. Dupont, Nucl. Data Sheets 120, 294 (2014)

    Article  ADS  Google Scholar 

  12. G. Leinweber, D.P. Barry, M.J. Trbovich, J.A. Burke, N.J. Drindak, H.D. Knox, R.V. Ballad, R.C. Block, Y. Danon, L.I. Severnyak, Nucl. Sci. Eng. 154, 261 (2006)

    Article  Google Scholar 

  13. B. Baramsai, G.E. Mitchell, U. Agvaanluvsan, F. Bečvář, T.A. Bredeweg, A. Chyzh, A. Couture, D. Dashdorj, R.C. Haight, M. Jandel, A.L. Keksis, M. Krička, J.M. O’Donnell, R.S. Rundberg, J.L. Ullmann, D.J. Vieira, C.L. Walker, Phys. Rev. C 85, 024622 (2012)

    Article  ADS  Google Scholar 

  14. Y.-R. Kang, M.W. Lee, G.N. Kim, T.-I. Ro, Y. Danon, D. Williams, Nucl. Sci. Eng. 180, 86 (2015)

    Article  Google Scholar 

  15. M. Mastromarco et al., Eur. Phys. J. A 55, 9 (2019)

    Article  ADS  Google Scholar 

  16. W. Mondelaers, P. Schillebeeckx, Notizario Neutroni e Luce di Sincrotrone 11, 19 (2006). http://www.fisica.uniroma2.it/~notiziario/2006/11_2_06/pag19.pdf. Accessed on 15 Oct 2019

  17. A. Borella, G. Aerts, F. Gunsing, M. Moxon, P. Schillebeeckx, R. Wynants, Phys. Rev. C 76, 014605 (2007)

    Article  ADS  Google Scholar 

  18. C. Massimi, B. Becker, E. Dupont, S. Kopecky, C. Lampoudis, R. Massarczyk, M. Moxon, V. Pronyaev, P. Shillebeeckx, I. Sirakov, R. Wynants, Eur. Phys. J. A 50, 124 (2014)

    Article  ADS  Google Scholar 

  19. H.I. Kim, C. Paradela, I. Sirakov, B. Becker, R. Capote, F. Gunsing, G.N. Kim, S. Kopecky, C. Lampoudis, Y.-O. Lee, R. Massarczyk, A. Moens, M. Moxon, V.G. Pronyaev, P. Schillebeeckx, R. Wynants, Eur. Phys. J. A 52, 170 (2019)

    Article  ADS  Google Scholar 

  20. A. Borella, G. Aerts, F. Gunsing, M. Moxon, P. Schillebeeckx, R. Wynants, Nucl. Instrum. Methods A 577, 626 (2007)

    Article  ADS  Google Scholar 

  21. P. Schillebeeckx, B. Becker, Y. Danon, K. Guber, H. Harada, J. Heyse, A.R. Junghans, S. Kopecky, C. Massimi, M.C. Moxon, N. Otuka, I. Sirakov, K. Volev, Nucl. Data Sheets 113, 3054 (2012)

    Article  ADS  Google Scholar 

  22. D.B. Syme, Nucl. Instrum. Methods 198, 357 (1982)

    Article  Google Scholar 

  23. B. Becker, C. Bastian, F. Emiliani, F. Gunsing, J. Heyse, K. Kauwenberghs, S. Kopecky, C. Lampoudis, C. Massimi, N. Otuka, P. Schillebeeckx, I. Sirakov, J. Instrum. 7, 11002 (2012)

    Article  Google Scholar 

  24. F. Gunsing, P. Schillebeeeckx, V. Semkova, Summary Report of the Consultants’ Meeting on EXFOR Data in Resonance Region and Spectrometer Response Function, IAEA Headquarters, Vienna, Austria, 8–10 October 2013, INDC(NDS)-0647 (2013). https://www-nds.iaea.org/index-meeting-crp/CM-RF-2013/. Accessed on 15 Oct 2019

  25. M.C. Moxon, J.B. Brisland, GEEL REFIT. Nucl. Instrum. Methods A 640, 192 (1991)

    Google Scholar 

  26. C.W. Reich, M.S. Moore, Phys. Rev. 111, 929 (1958)

    Article  ADS  Google Scholar 

  27. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Flaska, D. Lathouwers, A.J.M. Plompen, W. Mondelaers, T.H.J.J. van der Hagen, H. van Dam, Nucl. Instrum. Methods A 555, 329 (2005)

    Article  ADS  Google Scholar 

  29. D. Ene, C. Borcea, S. Kopecky, W. Mondelaers, A. Negret, A.J.M. Plompen, Nucl. Instrum. Methods A 618, 54 (2010)

    Article  ADS  Google Scholar 

  30. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Research Foundation of Korea through a grant provided by the Ministry of Science, ICT and Future Planning (NRF-2017R1D1A1B03030484, NRF-2018M7A1A1072274, and NRF-2018R1A6A1A06024970). This work was supported by the open access programme EUFRAT of the JRC Geel. We are grateful to the GELINA operators for the dedicated running of the accelerator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Additional information

Communicated by Tohru Motobayashi

Appendix

Appendix

We list resonance parameters derived from a resonance shape analysis with REFIT. All resonances were supposed to be s-wave resonances and the spin was adopted from the ENDF/B-VIII.0 library [11]. The resonance energy, neutron width and radiation width are denoted by \({E}_{{0}}\), \(\Gamma _{\mathrm{n}}\), \(\Gamma _{\upgamma }\), respectively. The uncertainties of the resonance parameters derived in this work are only due to propagating the uncertainties due to counting statistics (Tables 8, 9, 10, 11, 12, 13 and 14).

Table 8 Resonance parameters of \(^{{155}}\hbox {Gd}\) isotope compared with those of ENDF/B-VIII.0 [11]
Table 9 Resonance parameters of \(^{{156}}\hbox {Gd}\) isotope compared with those of ENDF/B-VIII.0 [11]
Table 10 Resonance parameters of \(^{{157}}\hbox {Gd}\) isotope compared with those of ENDF/B-VIII.0 [11]
Table 11 Resonance parameters of \(^{{158}}\hbox {Gd}\) isotope compared with those of ENDF/B-VIII.0 [11]
Table 12 Resonance parameters of \(^{{160}}\hbox {Gd}\) isotope compared with those of ENDF/B-VIII.0 [11]
Table 13 Resonance energies and capture kernels of \(^{{155}}\hbox {Gd}\) resonances that are not included in the main evaluated libraries and were observed in this work. The energies and kernels are compared with those observed by Baramsai et al. [13], Kang et al. [14], and Mastromarco et al. [15]
Table 14 Resonance energies and capture kernels of \(^{{157}}\hbox {Gd}\) resonances that are not included in the main evaluated libraries and were observed in this work. The energies and kernels are compared with those observed by Kang et al. [14] and Mastromarco et al. [15]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kye, Yu., Shin, Sg., Cho, Mh. et al. Resonance parameters of Gd isotopes derived from capture measurements at GELINA. Eur. Phys. J. A 56, 30 (2020). https://doi.org/10.1140/epja/s10050-020-00047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00047-6

Navigation