Skip to main content
Log in

Measurement of neutron and proton analyzing powers on C, CH, \(CH_2\) and Cu targets in the momentum region 3–4.2 GeV/c

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The analyzing powers for proton elastic scattering (\(\varvec{p} A\rightarrow pX\)) and neutron charge exchange (\(\varvec{n} A\rightarrow p X\)) reactions on nuclei have been measured on C, CH, \(CH_2\) and Cu targets at incident neutron momenta 3.0–4.2 GeV/c by detecting one charged particle in forward direction. The polarized neutron measurements are the first of their kind. The experiment was performed using the Nuclotron accelerator in JINR Dubna, where polarized neutrons and protons were obtained from break-up of a polarized deuteron beam which has a maximum momentum of 13 GeV/c. The polarimeter ALPOM2 was used to obtain the analyzing power dependence on the transverse momentum of the final-state nucleon. These data have been used to estimate the figure of merit of a proposed experiment at Jefferson Laboratory to measure the recoiling neutron polarization in the quasi-elastic \(^2H(\varvec{e},e'\varvec{n})\) reaction, which yields information on the charge and magnetic elastic form factors of the neutron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. Authors’ comment: Data are illustrated in Figures. Numbers are available from the authors in tabulated form upon request.]

References

  1. N.E. Cheung et al., Calibration of the polarimeter POMME at proton energies between 1.05 and 2.4-GeV. Nucl. Instrum. Meth. A363, 561–567 (1995)

    Article  ADS  Google Scholar 

  2. L.S. Azhgirey, V.A. Arefev, S.N. Basilev, YuP Bushuev, V.V. Glagolev et al., Measurement of analyzing powers for the reaction \(\varvec {p} + CH_2\) at \(p_p\) = 1.75-GeV/c - 5.3-GeV/c. Nucl. Instrum. Meth. A538, 431–441 (2005)

    Article  ADS  Google Scholar 

  3. F. Lehar, Current experiments using polarized beams of the JINR LHE accelerator complex. Phys. Part. Nucl. 36, 501–528 (2005). [Fiz. Elem. Chast. Atom. Yadra 36,955 (2005)]

    Google Scholar 

  4. V.P. Balandin et al., Measurement of analyzing power for the reaction \(\varvec {p}\) + \(\text{ CH }_2\) at polarized proton momentum of 7.5 GeV/c (ALPOM2 proposal). Phys. Part. Nucl. 45(1), 330–332 (2014)

    Article  Google Scholar 

  5. V.D. Kekelidze, V.A. Matveev, I.N. Meshkov, A.S. Sorin, G.V. Trubnikov, Project nuclotron-based Ion collider facility at JINR. Phys. Part. Nucl. 48(5), 727–741 (2017)

    Article  Google Scholar 

  6. V.D. Kekelidze, NICA project at JINR: status and prospects. JINST 12(06), C06012 (2017)

    Article  Google Scholar 

  7. Simone Pacetti, Rinaldo Baldini Ferroli, Egle Tomasi-Gustafsson, Proton electromagnetic form factors: basic notions, present achievements and future perspectives. Phys. Rep. 550–551, 1–103 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson, The structure of the nucleon: elastic electromagnetic form factors. Eur. Phys. J. A 51, 79 (2015)

    Article  ADS  Google Scholar 

  9. A.I. Akhiezer, M.P. Rekalo, Polarization phenomena in electron scattering by protons in the high energy region. Sov. Phys. Dokl. 13, 572 (1968)

    ADS  Google Scholar 

  10. A.I. Akhiezer, M.P. Rekalo, Polarization effects in the scattering of leptons by hadrons. Sov. J. Part. Nucl. 4, 277 (1974)

    Google Scholar 

  11. M.K. Jones et al., \(G_{Ep} / G_{Mp}\) ratio by polarization transfer in \(\varvec {e} p \rightarrow e \varvec {p}\). Phys. Rev. Lett. 84, 1398–1402 (2000)

    Article  ADS  Google Scholar 

  12. V. Punjabi, C.F. Perdrisat, K.A. Aniol, F.T. Baker, J. Berthot et al., Proton elastic form-factor ratios to \(Q^2\) = 3.5 \(\text{ GeV }^2\) by polarization transfer. Phys. Rev. C C71, 055202 (2005)

    Article  ADS  Google Scholar 

  13. O. Gayou et al., Measurement of \(G_{Ep} / G_{Mp}\) in \(\varvec {e} p \rightarrow e \varvec {p}\) to \(Q^2\) = 5.6 \(\text{ GeV }^2\). Phys. Rev. Lett. 88, 092301 (2002)

  14. A.J.R. Puckett, E.J. Brash, O. Gayou, M.K. Jones, L. Pentchev et al., Final analysis of proton form factor ratio data at \(q^2 = 4.0\), 4.8 and 5.6 \(\text{ gev }^2\). Phys. Rev. C 85, 045203 (2012)

    Article  ADS  Google Scholar 

  15. A.J.R. Puckett, E.J. Brash, M.K. Jones, W. Luo, M. Meziane et al., Recoil polarization measurements of the proton electromagnetic form factor ratio to \(Q^2\) = 8.5 \(\text{ GeV }^2\). Phys. Rev. Lett. 104, 242301 (2010)

    Article  ADS  Google Scholar 

  16. A.J.R. Puckett et al., Polarization transfer observables in elastic electron proton scattering at \(Q^2 = 2.5, 5.2, 6.8,\) and 8.5 \(\text{ GeV }^2\). Phys. Rev. C96(5), 055203 (2017)

    ADS  Google Scholar 

  17. M. Meziane et al., Search for effects beyond the Born approximation in polarization transfer observables in \(\varvec {e} p\) elastic scattering. Phys. Rev. Lett. 106, 132501 (2011)

    Article  ADS  Google Scholar 

  18. C.F. Perdrisat, L.P. Pentchev, et al. Large Acceptance Proton Form Factor. Ratio Measurements at 13 and 15 \((\text{ GeV/c })^2\). Using Recoil Polarization Method, Jefferson Lab Experiment E12-07-109, 2007

  19. B.D. Anderson et al. The Neutron Electric Form Factor at \(Q^{2}\) up to 7\((\text{ GeV/c })^{2}\) from the reaction \(^{2}\!H(\varvec {e},e^{\prime }\varvec {n})\) via Recoil Polarimetry, Jefferson Lab Experiment E12-11-009, 2011

  20. J.R.M. Annand et al. Measurement of the Ratio \({\rm G}_{{\rm E}}^{{\rm n}}/{\rm G}_{{\rm M}}^{{\rm n}}\) by the Double-polarized \(^{2}\!H(\varvec {e},e^{\prime }\varvec {n})\) Reaction, Jefferson Lab Experiment E12-17-004, 2017

  21. G. Cates et al. Measurement of the Neutron Electromagnetic Form Factor Ratio \(G_E^n/G^n_M\) at High \(Q^2\), Jefferson Lab Experiment PR12-09-016, 2009

  22. J. Becker et al., Determination of the neutron electric form-factor from the reaction \(^3\!He(e, e^{\prime } n)\) at medium momentum transfer. Eur. Phys. J. A 6, 329–344 (1999)

    Article  ADS  Google Scholar 

  23. T. Eden et al., Electric form factor of the neutron from the \(^{2}H(\varvec {e},e^{\prime }\varvec {n})^{1}H\) reaction at \(Q^{2} =\) 0.255 \((\text{ GeV/c })^2\). Phys. Rev. C 50(4), R1749–R1753 (1994)

    Article  ADS  Google Scholar 

  24. D.I. Glazier, M. Seimetz, J.R.M. Annand, H. Arenhovel, M Ases Antelo et al., Measurement of the electric form-factor of the neutron at \(\text{ Q }^2\) = 0.3 (GeV\(/c\))\(^2\) to 0.8 \((\text{ GeV/c })^2\). Eur. Phys. J. A24, 101–109 (2005)

    Article  ADS  Google Scholar 

  25. J. Golak, G. Ziemer, H. Kamada, H. Witala, Walter Gloeckle, Extraction of electromagnetic neutron form-factors through inclusive and exclusive polarized electron scattering on polarized \(^3\!He\) target. Phys. Rev. C 63, 034006 (2001)

    Article  ADS  Google Scholar 

  26. C. Herberg, M. Ostrick, H.G. Andresen, J.R.M. Annand, K. Aulenbacher et al., Determination of the neutron electric form-factor in the \(D(e, e^{\prime } n)p\) reaction and the influence of nuclear binding. Eur. Phys. J. A 5, 131–135 (1999)

    Article  ADS  Google Scholar 

  27. M. Meyerhoff et al., First measurement of the electric form-factor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized \(^3\!He\). Phys. Lett. B 327, 201–207 (1994)

    Article  ADS  Google Scholar 

  28. M. Ostrick, C. Herberg, H.G. Andresen, J.R.M. Annand, K. Aulenbacher et al., Measurement of the neutron electric form factor \(G_{En}\) in the quasifree \(^2\!H(\varvec {e}, e^{\prime }\varvec {n})p\) reaction. Phys. Rev. Lett. 83, 276–279 (1999)

    Article  ADS  Google Scholar 

  29. I. Passchier et al., The Charge form-factor of the neutron from the reaction polarized \(^2\!H (\varvec {e}, e^{\prime } n)p\). Nucl. Phys. A 663, 421–424 (2000)

    Article  ADS  Google Scholar 

  30. Craig D. Roberts, Anthony G. Williams, Dyson–Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477–575 (1994)

    Article  ADS  Google Scholar 

  31. B. Plaster et al., Measurements of the neutron electric to magnetic form-factor ratio \(G_{En} / G_{Mn}\) via the \(^2\!H(\varvec {e}, e^{\prime }\varvec {n})^1\!H \) reaction to \(\text{ Q }^2\) = 1.45 \((\text{ GeV/c })^2\). Phys. Rev. C 73, 025205 (2006)

    Article  ADS  Google Scholar 

  32. R. Madey et al., Measurements of \(G_{En} / G_{Mn}\) from the \(^2\!H (\varvec {e},e^{\prime }\varvec {n})\) reaction to \(\text{ Q }^2\) = 1.45 \((\text{ GeV/c })^2\). Phys. Rev. Lett. 91, 122002 (2003)

    Article  ADS  Google Scholar 

  33. S. Riordan et al., Measurements of the electric form factor of the neutron up to \(Q^2=3.4~\text{ GeV }^2\) using the reaction \(\varvec {^3\! He}(\varvec {e},e^{\prime }n)pp\). Phys. Rev. Lett. 105, 262302 (2010)

    Article  ADS  Google Scholar 

  34. R. Diebold, D.S. Ayres, S.L. Kramer, A.J. Pawlicki, A.B. Wicklund, Measurement of the proton–neutron elastic-scattering polarization from 2–6 GeV/c. Phys. Rev. Lett. 35, 632–635 (1975)

    Article  ADS  Google Scholar 

  35. S.L. Kramer, D.S. Ayres, Daniel H Cohen, R. Diebold, A .J. Pawlicki, A .B. Wicklund, Polarization parameter for nucleon–nucleon elastic scattering at 11.8-GeV/c. Phys. Rev. D 17, 1709 (1978)

    Article  ADS  Google Scholar 

  36. H. Spinka et al., Beam polarization at the ZGS. Nucl. Instrum. Meth. 211, 239–261 (1983)

    Article  Google Scholar 

  37. I.G. Alekseev et al., Measurement of the carbon analyzing power for the momenta range 1.35\(~\text{ GeV }/c\) to 2.02\(~\text{ GeV }/c\). Nucl. Instrum. Meth. A434, 254–260 (1999)

    Article  ADS  Google Scholar 

  38. V.P. Ladygin. Analyzing power of \(pp\) and \(np\) elastic scattering at momenta between 2000 and 6000 MeV/c and polarimetry at LHE. Technical Report E13-99-123, Joint Inst. Nucl. Res., Dubna, (1999)

  39. M.A. Abolins, M.T. Lin, R.C. Ruchti, J.G. Horowitz, R.C. Kammerud, N.W. Reay et al., Measurement of the polarization parameter in \(np\) charge–exchange scattering from 2 to 12 GeV/c. Phys. Rev. Lett. 30, 1183–1185 (1973)

    Article  ADS  Google Scholar 

  40. P.R. Robrish et al., Backward \(n p\) scattering with a polarized target. Phys. Lett. 31B, 617–620 (1970)

    Article  ADS  Google Scholar 

  41. A. Kirillov et al. Relativistic polarized neutrons at the Laboratory of High-Energy Physics, JINR. In Particles and nuclei. In: Proceedings, 14th international conference, PANIC’96, Williamsburg, USA, May 22-28, 1996, pages 749–751, (1996)

  42. V.I. Sharov et al., Measurement of the \( n p\) total cross section difference \(\varDelta \sigma _L(np)\) at 1.39-GeV, 1.69-GeV, 1.89-GeV and 1.99-GeV. Eur. Phys. J. C 37, 79–90 (2004)

    Article  ADS  Google Scholar 

  43. N.N. Agapov, V.V. Fimushkin, V.P. Vadeev, V.P. Derenchuk, A.S. Belov. IUCF polarized ion source CIPIOS for JINR accelerator nuclotron. In Spin physics. Polarized electron sources and polarimeters. In: Proceedings, 16th international symposium, SPIN 2004, Trieste, Italy, October 10–16, 2004, and Workshop, PESP 2004, Mainz, Germany, October 7-9, 2004, pages 774–775, (2004)

  44. V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, YuV Prokofichev, B. Shutov, A.S. Belov, V.N. Zubets, A.V. Turbabin, Development of polarized ion source for the JINR accelerator complex. J. Phys. 679(1), 012058 (2016)

    Google Scholar 

  45. A. Abraham, The Principles of  Nuclear  Magnetism, vol. 32 (Oxford University Press, Oxford, UK, 1961)

    Google Scholar 

  46. B. Kuehn, C.F. Perdrisat, E.A. Strokovsky, Correlations between polarization observables in inclusive deuteron breakup. Phys. Atom. Nucl. 58, 1795–1800 (1995). [Yad. Fiz.58,1898(1995)]

    ADS  Google Scholar 

  47. P. Rukoyatkin, Relativistic polarized beams for experiments on the polarized proton target at the laboratory of high energies. Czech. J. Phys. 51, A345–A350 (2001)

    Article  Google Scholar 

  48. J. Bystricky. F. Lehar, Nucleon Nucleon Scattering Data - Summary Tables, 1981 edn. (Karlsruhe, Germany, Fiz, 1981), p. 222 (Physics Data, 11–2)

  49. B. Bonin et al., Measurement of the inclusive \(pC\) analyzing power and cross-section in the 1 GeV region and calibration of the new polarimeter POMME. Nucl. Instrum. Meth. A 288, 379 (1990)

    Article  ADS  Google Scholar 

  50. F. Lehar et al., Measurement of the total cross-section difference \(\varDelta \sigma ^-L\) in \(n p\) transmission at 1.19-GeV, 2.49-GeV and 3.65-GeV. Z. Phys. C 71, 65–74 (1996)

    Article  ADS  Google Scholar 

  51. V.V. Glagolev et al., STRELA experimental setup for studying charge–exchange processes. Nucl. Exp. Tech. 56, 387–397 (2013)

    Google Scholar 

  52. N.V. Vlasov et al., A calorimeter for detecting hadrons with energies of 10–100 GeV. Instrum. Exp. Tech. 49(1), 41–55 (2006)

    Article  Google Scholar 

  53. Ph Abbon, E. Albrecht, VYu. Alexakhin, Yu. Alexandrov, G.D. Alexeev, M.G. Alekseev, A. Amoroso, H. Angerer, V.A. Anosov, B. Badełek et al., The COMPASS experiment at CERN. Nucl. Instrum. Meth. A 577(3), 455–518 (2007)

    Article  ADS  Google Scholar 

  54. I.M. Sitnik, Development of the FUMILI minimization package. Comput. Phys. Commun. 185, 599–603 (2014)

    Article  ADS  Google Scholar 

  55. M.N. Kreisler et al. Neutron-proton elastic scattering from 1 to 6.3 GeV. Technical report, Stanford University, SLAC Report n. 66, (1966)

  56. B.G. Gibbard, M.J. Longo, Lawrence W Jones, J .R. O’ Fallon, M .N. Kreisler, M .L. Perl, Neutron-proton elastic scattering from 5 to 30 GeV/c. Nucl. Phys. B 30, 77–115 (1971)

    Article  ADS  Google Scholar 

  57. J. Jaros et al., Nucleus–nucleus total cross-sections for light nuclei at 1.55-GeV/c/Nucleon and 2.89-GeV/c/Nucleon. Phys. Rev. C 18, 2273–2292 (1978)

    Article  ADS  Google Scholar 

  58. I. Savin, A. Efremov, D. Peshekhonov, A. Kovalenko, O. Teryaev, O. Shevchenko, A. Nagajcev, A. Guskov, V. Kukhtin, N. Toplilin, Spin physics experiments at NICA-SPD with polarized proton and deuteron beams. Eur. Phys. J. A 52(8), 215 (2016)

    Article  ADS  Google Scholar 

  59. I.M. Sitnik, Development of the FUMILIM minimization package. Comput. Phys. Commun. 209, 199 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the JINR-VBLHEP directorate for supporting their experiment, and the Nuclotron accelerator team, in particular the polarized deuteron source for providing them with a stable and high quality beam. This work has been partially supported by Université Paris-Saclay under grant P2I-ALPOM, by the Slovak Grant Agency VEGA under grant No. 1/0113/18, and by the UK Science and Technology Facilities Council under grants No. 57071/1 and No. 50727/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tomasi-Gustafsson.

Additional information

Communicated by P. Rossi

Appendix: calculation of the analyzing powers

Appendix: calculation of the analyzing powers

The calculation of analyzing power is based on the analysis of the two \((\varphi ,p_t)\)-plots corresponding to the two different polarization modes. We denote the bin values as \(N_{ij}(1),N_{ij}(2)\), where the first index, i, is related to \(\varphi \) and the second one, j, is related to \(p_t\).

The values of the vector analyzing power \(b_j\) are obtained from a fit that minimizes the following quantity:

$$\begin{aligned} \sum _{i,j} \left( \frac{R_{ij}-b_jf(\varphi )_i}{\varDelta R_{ij}}\right) ^2, \end{aligned}$$
(4)

with

$$\begin{aligned}&R_{ij} = \frac{N_{ij}(2)-C\cdot N_{ij}(1)}{C\cdot N_{ij}(1)P(2)+N_{ij}(2)P(1)}, \end{aligned}$$
(5)
$$\begin{aligned}&\varDelta R_{ij} = \sqrt{\frac{N_{ij}(1)N_{ij}(2)}{[N_{ij}(1)+N_{ij}(2)]^3}}\cdot \frac{2}{|P(2)+P(1)|}, \end{aligned}$$
(6)

where P(k) refers to the beam polarization, \(k=1,2\) relates to the polarization mode, and

$$\begin{aligned} C=\frac{I[P(2)]}{I[P(1)]} \end{aligned}$$

is the ratio of intensities (I) in the different polarization modes.

The fit is not equivalent to a number of j independent fits:

$$\begin{aligned} \sum _{i} \left( \frac{R_{ij}-b_jf(\varphi )_i}{\varDelta R_{ij}}\right) ^2 = min, \end{aligned}$$
(7)

because the parameter C is common for all j and can be taken as a free parameter. Such a fit provides reliable results due to the small correlation existing between C and \(b_j\) in Eqs. (4) and (5) (\(<0.5\)%).

This program is included into the latest FUMILIM package, Ref. [59].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basilev, S.N., Bushuev, Y.P., Gavrishchuk, O.P. et al. Measurement of neutron and proton analyzing powers on C, CH, \(CH_2\) and Cu targets in the momentum region 3–4.2 GeV/c. Eur. Phys. J. A 56, 26 (2020). https://doi.org/10.1140/epja/s10050-020-00032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00032-z

Navigation