Skip to main content
Log in

Systematical investigation on the stability of doubly heavy tetraquark states

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We systematically investigate the stability of the doubly heavy tetraquark states \([Q_1Q_2][\bar{q}_3\bar{q}_4]\) (\(Q=c\) and b, \(q=u\), d and s) within the framework of the alternative color flux-tube model involving a multi-body confinement potential, \(\sigma \)-exchange, one-gluon exchange and one-Goldstone-boson-exchange interactions. Our numerical analysis indicates that the states \([bb][\bar{u}\bar{d}]\) with \(01^+\) and \([bb][\bar{u}\bar{s}]\) with \(1^+\) are the most promising stable states against the strong interaction. The states \([cc][\bar{u}\bar{d}]\) with \(01^+\), \([bc][\bar{u}\bar{d}]\) with \(00^+\) and \(01^+\), and \([bb][\bar{u}\bar{d}]\) with \(01^-\) as stable states are also predicted in the model. The dynamical mechanism producing those stable states with tetrahedral structure are discussed in the model. The states \([bb][\bar{u}\bar{d}]\) and \([bc][\bar{u}\bar{d}]\) with \(IJ^P=12^+\) would not be stable although they are, respectively, below the \(\bar{B}^*\bar{B}^*\) and \(D^*\bar{B}^*\) thresholds because they can decay into D-wave \(\bar{B}\bar{B}\) and \(D\bar{B}\) through the strong interaction. The states should have narrow widths if they really exist as our model prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data may be made available upon request.]

References

  1. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rep. 639, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. F.K. Guo, C. Hanhart, Ulf-G Meißner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

    Article  ADS  Google Scholar 

  3. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018)

    Article  ADS  Google Scholar 

  4. Y.R. Lui, H.X. Chen, W. Chen, X. Liue, S.L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019)

    Article  ADS  Google Scholar 

  5. C.R. Deng, J.L. Ping, H.X. Huang, F. Wang, Phys. Rev. D 98, 014026 (2018)

    Article  ADS  Google Scholar 

  6. J.P. Ader, J.M. Richard, P. Taxil, Phys. Rev. D 25, 2370 (1982)

    Article  ADS  Google Scholar 

  7. J.L. Ballot, J.M. Richard, Phys. Lett. B 123, 449 (1983)

    Article  ADS  Google Scholar 

  8. J. Carlson, L. Heller, J.A. Tjon, Phys. Rev. D 37, 744 (1988)

    Article  ADS  Google Scholar 

  9. J. Vijande, A. Valcarce, K. Tsushima, Phys. Rev. D 74, 054018 (2006)

    Article  ADS  Google Scholar 

  10. D.M. Brink, F.M. Stancu, Phys. Rev. D 57, 6778 (1998)

    Article  ADS  Google Scholar 

  11. B. Silvestre-Brac, C. Semay, Z. Phys. C 59, 457 (1993)

    Article  ADS  Google Scholar 

  12. S. Zouzou, B. Silvestre-Brac, C. Gignoux, J. Richard, Z. Phys. C 30, 457 (1986)

    Article  ADS  Google Scholar 

  13. A.V. Manohar, M.B. Wise, Nucl. Phys. B 399, 17 (1993)

    Article  ADS  Google Scholar 

  14. J. Vijande, A. Valcarce, J.-M. Richard, Phys. Rev. D 76, 114013 (2007)

    Article  ADS  Google Scholar 

  15. C. Ay, J.M. Richard, J.H. Rubinstein, Phys. Lett. B 674, 227 (2009)

    Article  ADS  Google Scholar 

  16. P. Bicudo, M. Wagner, Phys. Rev. D 87, 114511 (2013)

    Article  ADS  Google Scholar 

  17. Y. Ikeda, B. Charron, S. Aoki, T. Doia et al., Phys. Lett. B 729, 85 (2014)

    Article  ADS  Google Scholar 

  18. P. Bicudo, K.F. Cichy, A. Peters, B. Wagenbach, M. Wagner, Phys. Rev. D 92, 014507 (2015)

    Article  ADS  Google Scholar 

  19. M.L. Du, W. Chen, X.L. Chen, S.L. Zhu, Phys. Rev. D 87, 014003 (2013)

    Article  ADS  Google Scholar 

  20. W. Chen, T.G. Steele, S.L. Zhu, Phys. Rev. D 89, 054037 (2014)

    Article  ADS  Google Scholar 

  21. R. Aaij et al., Phys. Rev. Lett. 119, 112001 (2017)

    Article  ADS  Google Scholar 

  22. M. Karliner, J.L. Rosner, Phys. Rev. Lett. 119, 202001 (2017)

    Article  Google Scholar 

  23. E.J. Eichten, C. Quigg, Phys. Rev. Lett. 119, 202002 (2017)

    Article  Google Scholar 

  24. A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118, 142001 (2017)

    Article  ADS  Google Scholar 

  25. A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. D 99, 054505 (2019)

    Article  ADS  Google Scholar 

  26. P. Bicudo, J. Scheunert, M. Wagner, Phys. Rev. D 95, 034502 (2017)

    Article  ADS  Google Scholar 

  27. M. Pflaumer, P. Bicudob, M. Cardoso, A. Peters, M. Wagner, arXiv: 1811.04724v1 [hep-lat]

  28. W. Park, S. Noh, S.H. Lee, Acta Phys. Polo. B 50, 1151 (2019)

    Article  ADS  Google Scholar 

  29. A. Czarnecki, B. Leng, M.B. Voloshin, Phys. Lett. B 778, 233 (2018)

    Article  ADS  Google Scholar 

  30. C. Quigg, arXiv: 1804.04929 [hep-ph]

  31. S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, Nucl. Phys. B 939, 130 (2019)

    Article  ADS  Google Scholar 

  32. S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, arXiv: 1809.07791v1 [hep-ph]

  33. J.-M. Richard, A. Valcarce, J. Vijande, arXiv: 1811.02863 [hep-ph]

  34. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)

    Article  ADS  Google Scholar 

  35. Y. Fujiwara, C. Nakamoto, Y. Suzuki, Phys. Rev. C 54, 2180 (1996)

    Article  ADS  Google Scholar 

  36. Y. Fujiwara, K. Miyagawa, M. Kohno, Y. Suzuki, C. Nakamoto, Nucl. Phys. A 737, 243 (2004)

    Article  ADS  Google Scholar 

  37. C. Alexandrou, P. de Forcrand, A. Tsapalis, Phys. Rev. D 65, 054503 (2002)

    Article  ADS  Google Scholar 

  38. T.T. Takahashi, H. Suganuma, Y. Nemoto, H. Matsufuru, Phys. Rev. D 65, 114509 (2002)

    Article  ADS  Google Scholar 

  39. F. Okiharu, H. Suganuma, T.T. Takahashi, Phys. Rev. Lett. 94, 192001 (2005)

    Article  ADS  Google Scholar 

  40. C.R. Deng, J.L. Ping, F. Wang, T. Goldman, Phys. Rev. D 82, 074001 (2010)

    Article  ADS  Google Scholar 

  41. C.R. Deng, J.L. Ping, Y.C. Yang, F. Wang, Phys. Rev. D 86, 014008 (2012)

    Article  ADS  Google Scholar 

  42. C.R. Deng, J.L. Ping, Y.C. Yang, F. Wang, Phys. Rev. D 88, 074007 (2013)

    Article  ADS  Google Scholar 

  43. G. Feinberg, J. Sucher, Phys. Rev. D 20, 1717 (1979)

    Article  ADS  Google Scholar 

  44. O.W. Greenberg, H.J. Lipkin, Nucl. Phys. A 370, 349 (1981)

    Article  ADS  Google Scholar 

  45. J. Weinstein, N. Isgur, Phys. Rev. Lett. 48, 659 (1982)

    Article  ADS  Google Scholar 

  46. H.J. Lipkin, Phys. Lett. B 113, 490 (1982)

    Article  ADS  Google Scholar 

  47. O.W. Greenberg, J. Hietarinta, Phys. Lett. B 86, 309 (1979)

    Article  ADS  Google Scholar 

  48. D. Robson, Phys. Rev. D 35, 1018 (1987)

    Article  ADS  Google Scholar 

  49. V. Dmitrasinovic, Phys. Rev. D 67, 114007 (2003)

    Article  ADS  Google Scholar 

  50. A. Di Giacomo, M. Maggiore, S. Olejnik, Phys. Lett. B 236, 199 (1990)

    Article  ADS  Google Scholar 

  51. A. Di Giacomo, M. Maggiore, S. Olejnik, Nucl. Phys. B 347, 441 (1990)

    Article  ADS  Google Scholar 

  52. V. Singh, D. Browne, R. Haymaker, Phys. Lett. B 306, 115 (1993)

    Article  ADS  Google Scholar 

  53. G. Bali, K. Schilling, C. Schlichter, Phys. Rev. D 51, 5165 (1995)

    Article  ADS  Google Scholar 

  54. D. Bugg, Phys. Rep. 397, 257 (2004)

    Article  ADS  Google Scholar 

  55. Y. Nambu, Phys. Rev. D 10, 4262 (1974)

    Article  ADS  Google Scholar 

  56. G’t Hooft, Nucl. Phys. B 153, 141 (1979)

    Article  ADS  Google Scholar 

  57. S. Mandelstam, Phys. Rep. 23, 245 (1976)

    Article  ADS  Google Scholar 

  58. S.N. Chen, J.L. Ping, Mod. Phys. Lett. A 27, 1250025 (2012)

    Article  ADS  Google Scholar 

  59. J.L. Ping, F. Wang, T. Goldman, Nucl. Phys. A 657, 95 (1999)

    Article  ADS  Google Scholar 

  60. A. Valcarce, H. Garcilazo, F. Fernández, P. González, Rep. Prog. Phys. 68, 965 (2005)

    Article  ADS  Google Scholar 

  61. T. Goldman, S. Yankielowicz, Phys. Rev. D 12, 2910 (1975)

    Article  ADS  Google Scholar 

  62. N. Cardoso, M. Cardoso, P. Bicudo, Phys. Rev. D 84, 054508 (2011)

    Article  ADS  Google Scholar 

  63. M. Cardoso, N. Cardoso, P. Bicudo, Phys. Rev. D 86, 014503 (2012)

    Article  ADS  Google Scholar 

  64. G.S. Bali, Phys. Rev. D 62, 114503 (2000)

    Article  ADS  Google Scholar 

  65. C. Semay, Eur. Phys. J. A 22, 353 (2004)

    Article  ADS  Google Scholar 

  66. N. Cardoso, M. Cardoso, P. Bicudo, Phys. Lett. B 710, 343 (2012)

    Article  ADS  Google Scholar 

  67. F. Okiharu, H. Suganuma, T.T. Takahashi, Phys. Rev. D 72, 014505 (2005)

    Article  ADS  Google Scholar 

  68. P. Bicudo, Marco Cardoso, Phys. Rev. D 83, 094010 (2011)

    Article  ADS  Google Scholar 

  69. J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481 (2005)

    Article  ADS  Google Scholar 

  70. J. Weinstein, N. Isgur, Phys. Rev. D 27, 588 (1983)

    Article  ADS  Google Scholar 

  71. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  72. L.Y. Glozman, D.O. Riska, Phys. Rep. 268, 263 (1996)

    Article  ADS  Google Scholar 

  73. Y. Fujiwara, T. Fujita, C. Nakamoto, Y. Suzuki, M. Khono, Nucl. Phys. A 639, 41c (1998)

    Article  ADS  Google Scholar 

  74. Y. Fujiwara, T. Fujita, M. Kohno, C. Nakamoto, Y. Suzuki, Phys. Rev. C 65, 014002 (2001)

    Article  ADS  Google Scholar 

  75. Y. Fujiwara, K. Miyagawa, M. Khono, Y. Suzuki, C. Nakamoto, Nucl. Phys. A 737, 243 (2004)

    Article  ADS  Google Scholar 

  76. M.D. Scadron, Phys. Rev. D 26, 239 (1982)

    Article  ADS  Google Scholar 

  77. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  78. C. Semay, B. Silvestre-Brac, Phys. Rev. D 46, 5177 (1992)

    Article  ADS  Google Scholar 

  79. F. Wang, G.H. Wu, L.J. Teng, T. Goldman, Phys. Rev. Lett. 69, 2901 (1992)

    Article  ADS  Google Scholar 

  80. M. Chen, H.X. Huang, J.L. Ping, F. Wang, Phys. Rev. C 83, 015202 (2011)

    Article  ADS  Google Scholar 

  81. F. Huang, W.L. Wang, Phys. Rev. D 98, 074018 (2018)

    Article  ADS  Google Scholar 

  82. J. Vijande, A. Valcarce, N. Barnea, Phys. Rev. D 79, 074010 (2009)

    Article  ADS  Google Scholar 

  83. J.M. Richard, A. Valcarce, J. Vijande, Phys. Lett. B 774, 710 (2017)

    Article  ADS  Google Scholar 

  84. J.M. Richard, A. Valcarce, J. Vijande, Phys. Lett. B 790, 248 (2019)

    Article  ADS  Google Scholar 

  85. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

  86. D. Ebert, R.N. Faustov, V.O. Galkin, W. Lucha, Phys. Rev. D 76, 114015 (2007)

    Article  ADS  Google Scholar 

  87. J. Vijande, F. Fernández, A. Valcarce, B. Silvestre-Brac, Eur. Phys. J. A 19, 383 (2004)

    Article  ADS  Google Scholar 

  88. S. Pepin, F. Stancu, M. Genovese, J.M. Richard, Phys. Lett. B 393, 119 (1997)

    Article  ADS  Google Scholar 

  89. S. Sakai, L. Roca, E. Oset, Phys. Rev. D 96, 054023 (2017)

    Article  ADS  Google Scholar 

  90. W. Chen, T.G. Steele, arXiv:1310.8337 [hep-ph]

  91. T.F. Carames, J. Vijande, A. Valcarce, Phys. Rev. D 99, 014006 (2019)

    Article  ADS  Google Scholar 

  92. W. Park, S.H. Lee, Nucl. Phys. A 925, 161 (2014)

    Article  ADS  Google Scholar 

  93. B. Silvestre-Brac, C. Semay, Z. Phys. C 57, 273 (1993)

    Article  ADS  Google Scholar 

  94. Y. Ikeda, B. Charron, S. Aoki, T. Doi et al., Phys. Lett. B 729, 85 (2014)

    Article  ADS  Google Scholar 

  95. S.Q. Luo, K. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Eur. Phys. J. C 77, 709 (2017)

    Article  ADS  Google Scholar 

  96. F. Okiharu, H. Suganuma, T.T. Takahashi, Phys. Rev. D 72, 014505 (2005)

    Article  ADS  Google Scholar 

  97. P. Bicudo, M. Cardoso, Phys. Rev. D 94, 094032 (2016)

    Article  ADS  Google Scholar 

  98. M. Cardoso, N. Cardoso, P. Bicudo, Phys. Rev. D 86, 014503 (2012)

    Article  ADS  Google Scholar 

  99. N. Cardoso, P. Bicudo, Phys. Rev. D 87, 034504 (2013)

    Article  ADS  Google Scholar 

  100. R.L. Zhu, X.J. Liu, H.X. Huang, C.F. Qiao, Phys. Lett. B 797, 134869 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research is partly supported by the National Science Foundation of China under Contracts nos. 11875226 and 11775118, the Chongqing Natural Science Foundation under Project no. cstc2019jcyj-msxmX0409 and Fundamental Research Funds for the Central Universities under Contracts no. SWU118111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengrong Deng.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Chen, H. & Ping, J. Systematical investigation on the stability of doubly heavy tetraquark states. Eur. Phys. J. A 56, 9 (2020). https://doi.org/10.1140/epja/s10050-019-00012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00012-y

Navigation