Skip to main content
Log in

Status and future perspectives for lattice gauge theory calculations to the exascale and beyond

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this and a set of companion white papers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These white papers describe how calculation using Lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. USQCD Collaboration (Alexei Bazavov, Frithjof Karsch, Swagato Mukherjee, Peter Petreczky), Hot-dense Lattice QCD, https://doi.org/10.1140/epja/i2019-12922-0 (2019)

  2. USQCD Collaboration (Richard Brower, Anna Hasenfratz, Ethan T. Neil), Lattice gauge theory for physics beyond the Standard Model, https://doi.org/10.1140/epja/i2019-12901-5 (2019)

  3. USQCD Collaboration (Vincenzo Cirigliano, Zohreh Davoudi), The role of Lattice QCD in searches for violations of fundamental symmetries and signals for new physics, https://doi.org/10.1140/epja/i2019-12889-8 (2019)

  4. USQCD Collaboration (William Detmold, Robert G. Edwards), Hadrons and nuclei, https://doi.org/10.1140/epja/i2019-12902-4 (2019)

  5. USQCD Collaboration (Andreas S. Kronfeld, David G. Richards), Lattice QCD and neutrino-nucleus scattering, https://doi.org/10.1140/epja/i2019-12916-x (2019)

  6. USQCD Collaboration (Christoph Lehner, Stefan Meinel), Opportunities for lattice QCD in quark and lepton flavor physics, https://doi.org/10.1140/epja/i2019-12891-2 (2019)

  7. USQCD Collaboration (Bálint Joó, Chulwoo Jung) this paper

  8. PANDA, http://news.pandawms.org/panda.html

  9. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Phys. Lett. B 195, 216 (1987)

    ADS  MathSciNet  Google Scholar 

  10. Christophe Andrieu, Nando De Freitas, Arnaud Doucet, Michael I. Jordan, Mach. Learn. 50, 5 (2003)

    Google Scholar 

  11. C. Schütte, A. Fischer, W. Huisinga, P. Deuflhard, J. Comput. Phys. 151, 146 (1999)

    ADS  MathSciNet  Google Scholar 

  12. A. Brass, B.J. Pendleton, Y. Chen, B. Robson, Biopolymers 33, 1307 (1993)

    Google Scholar 

  13. D.S. Dias, R.S. Ehlers, Stochastic volatily models using Hamiltonian Monte Carlo methods and Stan, arXiv:1712.02326 [stat.AP] (2017)

  14. T. Takaishi Financial time series analysis of SV model by hybrid Monte Carlo, arXiv:0807.4394 [q-fin.ST] (2008)

    Google Scholar 

  15. Simon Duane, Brian J. Pendleton, Phys. Lett. B 206, 101 (1988)

    ADS  Google Scholar 

  16. Mark Girolami, Ben Calderhead, J. R. Stat. Soc. B 73, 123 (2011)

    Google Scholar 

  17. John Beetem, Monty Denneau, Don Weingarten, SIGARCH Comput. Archit. News 13, 108 (1985)

    Google Scholar 

  18. P. Vicini et al., Comput. Phys. Commun. 110, 216 (1998)

    ADS  Google Scholar 

  19. Paul Arts et al., PoS LATTICE2014, 021 (2015) arXiv:1502.04025 [cs.DC]

    Google Scholar 

  20. P.A. Boyle, D. Chen, N.H. Christ, M.A. Clark, S.D. Cohen, C. Cristian, Z. Dong, A. Gara, B. Jo, C. Jung, C. Kim, L.A. Levkova, X. Liao, G. Liu, R.D. Mawhinney, S. Ohta, K. Petrov, T. Wettig, A. Yamaguchi, IBM J. Res. Dev. 49, 351 (2005)

    Google Scholar 

  21. N.R. Adiga, G. Almasi, G.S. Almasi, Yariv Aridor, Rajkishore Barik, D. Beece, Ralph Bellofatto, Gyan Bhanot, Randy Bickford, M. Blumrich, A.A. Bright, Jos Brunheroto, Calin Cascaval, J. Castanos, W. Chan, Luis Ceze, Paul Coteus, S. Chatterjee, D. Chen, K. Yates, An overview of the Blue Gene/L supercomputer, in SC ’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing (IEEE, 2002) pp. 1--22

  22. P.A. Boyle, PoS LATTICE2012, 020 (2012)

    Google Scholar 

  23. Gyozo I. Egri, Zoltan Fodor, Christian Hoelbling, Sandor D. Katz, Daniel Nogradi, Kalman K. Szabo, Comput. Phys. Commun. 177, 631 (2007) arXiv:hep-lat/0611022 [hep-lat]

    ADS  Google Scholar 

  24. M.A. Clark et al., Comput. Phys. Commun. 181, 1517 (2010) arXiv:0911.3191 [hep-lat]

    ADS  Google Scholar 

  25. Ronald Babich, Michael A. Clark, Bálint Joó, Parallelizing the QUDA library for multi-GPU calculations in lattice quantum chromodynamics, in ACM/IEEE International Conference High Performance Computing, Networking, Storage and Analysis, New Orleans (IEEE, 2010) https://doi.org/10.1109/SC.2010.40, http://arXiv:1011.0024 [hep-lat]

  26. R. Babich, M.A. Clark, B. Jo, G. Shi, R.C. Brower, S. Gottlieb, Scaling Lattice QCD beyond 100 GPUs, in SC11 International Conference for High Performance Computing, Networking, Storage and Analysis Seattle, Washington, November 12–18, 2011 (ACM, 2011) arXiv:1109.2935 [hep-lat]

  27. M.A. Clark, Bálint Joó, Alexei Strelchenko, Michael Cheng, Arjun Gambhir, Richard Brower, Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization, in ACM/IEEE International Conference High Performance Computing, Networking, Storage and Analysis, Salt Lake City, Utah (2016) https://doi.org/10.1109/SC.2010.40, http://arXiv:1612.07873 [hep-lat]

  28. M.A. Clark, R. Babich, QUDA: A library for QCD on GPUs, http://lattice.github.io/quda/

  29. Venkitesh Ayyar, Daniel C. Hackett, William I. Jay, Ethan T. Neil, EPJ Web of Conferences 175, 09009 (2018) arXiv:1802.00851 [hep-lat]

    Google Scholar 

  30. Ian Foster, IEEE Internet Comput. 15, 70 (2011)

    Google Scholar 

  31. Magnus R. Hestenes, Eduard Stiefel, J. Res. Natl. Bur. Stand. 49, 409 (1952)

    Google Scholar 

  32. H.A. van der Vorst, SIAM J. Sci. Stat. Comput. 13, 631 (1992)

    Google Scholar 

  33. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    ADS  Google Scholar 

  34. Alan M. Horowitz, Phys. Lett. B 268, 247 (1991)

    ADS  Google Scholar 

  35. Tetsuya Takaishi, Philippe de Forcrand, Phys. Rev. E 73, 036706 (2006) arXiv:hep-lat/0505020 [hep-lat]

    ADS  Google Scholar 

  36. I.P. Omelyan, I.M. Mryglod, R. Folk, Comput. Phys. Commun. 146, 188 (2002) arXiv:cond-mat/0110585

    ADS  Google Scholar 

  37. A.D. Kennedy, M.A. Clark, P.J. Silva, PoS LAT2009, 021 (2009) arXiv:0910.2950 [hep-lat]

    Google Scholar 

  38. M.A. Clark, Bálint Joó, A.D. Kennedy, P.J. Silva, Phys. Rev. D 84, 071502 (2011) arXiv:1108.1828 [hep-lat]

    ADS  Google Scholar 

  39. Hantao Yin, Robert D. Mawhinney, PoS LATTICE2011, 051 (2011) arXiv:1111.5059 [hep-lat]

    Google Scholar 

  40. TWQCD Collaboration (Yu-Chih Chen, Ting-Wai Chiu), Phys. Lett. B 738, 55 (2014) arXiv:1403.1683 [hep-lat]

    ADS  Google Scholar 

  41. C. Jung, C. Kelly, R.D. Mawhinney, D.J. Murphy, Phys. Rev. D 97, 054503 (2018) arXiv:1706.05843 [hep-lat]

    ADS  Google Scholar 

  42. M.A. Clark, A.D. Kennedy, Phys. Rev. Lett. 98, 051601 (2007)

    ADS  Google Scholar 

  43. Roberto Frezzotti, Karl Jansen, Phys. Lett. B 402, 328 (1997) arXiv:hep-lat/9702016 [hep-lat]

    Google Scholar 

  44. CP-PACS, JLQCD Collaborations (A. Ukawa), Nucl. Phys. Proc. Suppl. 106, 195 (2002)

    ADS  Google Scholar 

  45. Martin Hasenbusch, Phys. Lett. B 519, 177 (2001) arXiv:hep-lat/0107019

    Google Scholar 

  46. M. Hasenbusch, K. Jansen, Nucl. Phys. B 659, 299 (2003) arXiv:hep-lat/0211042 [hep-lat]

    ADS  Google Scholar 

  47. C. Urbach, K. Jansen, A. Shindler, U. Wenger, Comput. Phys. Commun. 174, 87 (2006) arXiv:hep-lat/0506011 [hep-lat]

    ADS  Google Scholar 

  48. J.C. Sexton, D.H. Weingarten, Nucl. Phys. B 380, 665 (1992)

    ADS  Google Scholar 

  49. J.C. Osborn, QOPQDP software library, http://usqcd-software.github.io/qopqdp/

  50. Meifeng Lin, Multigrid in HMC, https://indico.fnal.gov/event/7435/session/1/contribution/9/material/slides/0.pdf (2013)

  51. Martin Lüscher, JHEP 12, 011 (2007) arXiv:0710.5417 [hep-lat]

    Google Scholar 

  52. Martin Lüscher, JHEP 05, 052 (2003) arXiv:hep-lat/0304007 [hep-lat]

    Google Scholar 

  53. Martin Lüscher, Comput. Phys. Commun. 156, 209 (2004) arXiv:hep-lat/0310048 [hep-lat]

    Google Scholar 

  54. Andreas Frommer, Karsten Kahl, Stefan Krieg, Björn Leder, Matthias Rottmann, SIAM J. Sci. Comput. 36, A1581 (2014) arXiv:1303.1377 [hep-lat]

    Google Scholar 

  55. Robert G. Edwards, Bálint Joó, Nucl. Phys. B. Proc. Suppl. 140, 832 (2005)

    Google Scholar 

  56. F.T. Winter, M.A. Clark, R.G. Edwards, B. Joó, A framework for lattice QCD calculations on GPUs, in Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS ’14 (IEEE Computer Society, Washington, DC, USA, 2014) pp. 1073--1082

  57. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003)

  58. G.G. Batrouni, G.R. Katz, Andreas S. Kronfeld, G.P. Lepage, B. Svetitsky, K.G. Wilson, Phys. Rev. D 32, 2736 (1985)

    ADS  Google Scholar 

  59. Jascha Sohl-Dickstein, Mayur Mudigonda, Michael DeWeese, Hamiltonian Monte Carlo without detailed balance, in Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 32, edited by Eric P. Xing, Tony Jebara (PMLR, Bejing, China, 2014) pp. 719--726

  60. Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky, Phys. Rev. D 92, 114516 (2015) arXiv:1510.04675 [hep-lat]

    ADS  Google Scholar 

  61. U. Glassner, S. Gusken, T. Lippert, G. Ritzenhofer, K. Schilling, A. Frommer, Int. J. Mod. Phys. C 7, 635 (1996) arXiv:hep-lat/9605008 [hep-lat]

    ADS  Google Scholar 

  62. Beat Jegerlehner, Krylov space solvers for shifted linear systems, arXiv:hep-lat/9612014 (1996)

  63. Andreas Stathopoulos, Kostas Orginos, Computing and deflating eigenvalues while solving multiple right hand side linear systems in Quantum Chromodynamics (2007) arXiv:0707.0131 [hep-lat]

  64. Abdou Abdel-Rehim, Kostas Orginos, Andreas Stathopoulos, PoS LAT2009, 036 (2009) arXiv:0911.2285 [hep-lat]

    Google Scholar 

  65. Andreas Frommer, Andrea Nobile, Paul Zingler, Deflation and flexible SAP-preconditioning of GMRES in lattice QCD simulation, arXiv:1204.5463 [hep-lat] (2012)

  66. Ronald Morgan, SIAM J. Sci. Comput. 24, 20 (2002)

    MathSciNet  Google Scholar 

  67. Youcef Saad, SIAM J. Sci. Comput. 14, 461 (1993)

    MathSciNet  Google Scholar 

  68. Martin Lüscher, JHEP 07, 081 (2007) arXiv:0706.2298 [hep-lat]

    Google Scholar 

  69. R. Babich, J. Brannick, R.C. Brower, M.A. Clark, T.A. Manteuffel et al., Phys. Rev. Lett. 105, 201602 (2010) arXiv:1005.3043 [hep-lat]

    ADS  Google Scholar 

  70. P.A. Boyle, Hierarchically deflated conjugate gradient arXiv:1402.2585 [hep-lat] (2014)

  71. Azusa Yamaguchi, Peter Boyle, PoS LATTICE2016, 374 (2016) arXiv:1611.06944 [hep-lat]

    Google Scholar 

  72. Jiqun Tu, Solving DWF Dirac Equation Using Multisplitting Preconditioned Conjugate Gradient arXiv:1811.08488 [hep-lat] (2018)

  73. M.A. Clark, Alexei Strelchenko, Alejandro Vaquero, Mathias Wagner, Evan Weinberg, Comput. Phys. Commun. 233, 29 (2018) arXiv:1710.09745 [hep-lat]

    ADS  MathSciNet  Google Scholar 

  74. Richard C. Brower, M.A. Clark, Alexei Strelchenko, Evan Weinberg, Phys. Rev. D 97, 114513 (2018) arXiv:1801.07823 [hep-lat]

    ADS  Google Scholar 

  75. J.C. Osborn, R. Babich, J. Brannick, R.C. Brower, M.A. Clark et al., PoS LATTICE2010, 037 (2010) arXiv:1011.2775 [hep-lat]

    Google Scholar 

  76. J. Brannick, R.C. Brower, M.A. Clark, J.C. Osborn, C. Rebbi, Phys. Rev. Lett. 100, 041601 (2008) arXiv:0707.4018 [hep-lat]

    ADS  Google Scholar 

  77. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, J. Ruge, SIAM J. Sci. Comput. 25, 2004 (2004)

    MathSciNet  Google Scholar 

  78. Michael A. Heroux, Toward resilient algorithms and applications, in Proceedings of the 3rd Workshop on Fault-tolerance for HPC at Extreme Scale, FTXS ’13 (ACM, New York, NY, USA, 2013) pp. 1–2

  79. O. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner, Conjugate gradient solvers on Intel Xeon Phi and NVIDIA GPUs, in Proceedings, GPU Computing in High-Energy Physics (GPUHEP2014): Pisa, Italy, September 10–12, 2014 (Verlag Deutsches Elektronen-Synchrotron, Hamburg, 2015) pp. 157--162, arXiv:1411.4439 [physics.comp-ph]

  80. Thomas Blum, Taku Izubuchi, Eigo Shintani, Phys. Rev. D 88, 094503 (2013) arXiv:1208.4349 [hep-lat]

    ADS  Google Scholar 

  81. Eigo Shintani, Rudy Arthur, Thomas Blum, Taku Izubuchi, Chulwoo Jung, Christoph Lehner, Phys. Rev. D 91, 114511 (2015) arXiv:1402.0244 [hep-lat]

    ADS  Google Scholar 

  82. Justin Foley et al., Comput. Phys. Commun. 172, 145 (2005) arXiv:hep-lat/0505023

    ADS  Google Scholar 

  83. Daniela Calvetti, Lothar Reichel, Danny C. Sorensen, Electron. Trans. Numer. Anal. 2, 1 (1994)

    MathSciNet  Google Scholar 

  84. M.A. Clark, Chulwoo Jung, Christoph Lehner, EPJ Web of Conferences 175, 14023 (2018) arXiv:1710.06884 [hep-lat]

    Google Scholar 

  85. RBC, UKQCD Collaborations (T. Blum et al.), Phys. Rev. D 93, 074505 (2016) arXiv:1411.7017 [hep-lat]

    ADS  Google Scholar 

  86. Mike Cafarella, Doug Cutting, Apache hadoop software library, https://hadoop.apache.org/

  87. Yong-Chull Jang, Chulwoo Jung, PoS LATTICE2018, 309 (2019)

    Google Scholar 

  88. Christopher Michael, Nucl. Phys. B 259, 58 (1985)

    Google Scholar 

  89. Martin Lüscher, Ulli Wolff, Nucl. Phys. B 339, 222 (1990)

    ADS  Google Scholar 

  90. Benoit Blossier, Michele Della Morte, Georg von Hippel, Tereza Mendes, Rainer Sommer, JHEP 04, 094 (2009) arXiv:0902.1265 [hep-lat]

    Google Scholar 

  91. Michael Peardon et al., Phys. Rev. D 80, 054506 (2009) arXiv:0905.2160 [hep-lat]

    ADS  Google Scholar 

  92. Jozef J. Dudek, Robert G. Edwards, Christopher E. Thomas, Phys. Rev. D 86, 034031 (2012) arXiv:1203.6041 [hep-ph]

    ADS  Google Scholar 

  93. Andreas Stathopoulos, Jesse Laeuchli, Kostas Orginos, Hierarchical probing for estimating the trace of the matrix inverse on toroidal lattices arXiv:1302.4018 [hep-lat] (2013)

    MathSciNet  MATH  Google Scholar 

  94. Martin Lüscher, Nucl. Phys. B 354, 531 (1991)

    Google Scholar 

  95. Martin Lüscher, Nucl. Phys. B 364, 237 (1991)

    Google Scholar 

  96. K. Rummukainen, Steven A. Gottlieb, Nucl. Phys. B 450, 397 (1995) arXiv:hep-lat/9503028 [hep-lat]

    ADS  Google Scholar 

  97. Raul A. Briceno, Jozef J. Dudek, Robert G. Edwards, David J. Wilson, Phys. Rev. Lett. 118, 022002 (2017) arXiv:1607.05900 [hep-ph]

    ADS  Google Scholar 

  98. Paulo F. Bedaque, Phys. Lett. B 593, 82 (2004) arXiv:nucl-th/0402051 [nucl-th]

    ADS  Google Scholar 

  99. William Detmold, Kostas Orginos, Phys. Rev. D 87, 114512 (2013) arXiv:1207.1452 [hep-lat]

    Google Scholar 

  100. Pranjal Vachaspati, William Detmold, PoS LATTICE2014, 041 (2014) arXiv:1411.3691 [hep-lat]

    Google Scholar 

  101. Paul B. Mackenzie, E. Eichten, G. Hockney, H.B. Thacker, R. Atac, A. Cook, M. Fischler, I. Gaines, D. Husby, T. Nash, Nucl. Phys. Proc. Suppl. 4, 580 (1988)

    ADS  Google Scholar 

  102. Dong Chen et al., Nucl. Phys. Proc. Suppl. 73, 898 (1999) arXiv:hep-lat/9810004 [hep-lat]

    ADS  Google Scholar 

  103. R.G. Edwards, B. Joó, F. Winter, The Chroma Code Web Page, http://jeffersonlab.github.io/chroma/

  104. Bálint Joó, Dhiraj D. Kalamkar, Karthikeyan Vaidyanathan, Mikhail Smelyanskiy, Kiran Pamnany, Victor W. Lee, Pradeep Dubey, William Watson, Lattice QCD on Intel Xeon Phi coprocessors, in Supercomputing, Lecture Notes in Computer Science, Vol. 7905, edited by Julian Martin Kunkel, Thomas Ludwig, Hans Werner Meuer (Springer Berlin Heidelberg, 2013) pp. 40--54

  105. Jefferson Lab GitHub Projects, QPhiX Library, https://github.com/jeffersonlab/qphix.git

  106. Simon Heybrock, Bálint Joó, Dhiraj D. Kalamkar, Mikhail Smelyanskiy, Karthikeyan Vaidyanathan, Tilo Wettig, Pradeep Dubey, Lattice QCD with domain decomposition on Intel Xeon Phi co-processors, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’14 (IEEE Press, Piscataway, NJ, USA, 2014) pp. 69--80

  107. Carleton DeTar, Douglas Doerfler, Steven Gottlieb, Ashish Jha, Dhiraj Kalamkar, Ruizi Li, Doug Toussaint, PoS LATTICE2016, 270 (2016) arXiv:1611.00728 [hep-lat]

    Google Scholar 

  108. Bálint Joó, Dhiraj D. Kalamkar, Thorsten Kurth, Karthikeyan Vaidyanathan, Aaron Walden, Optimizing Wilson-Dirac operator and linear solvers for Intel KNL, in High Performance Computing - ISC High Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, P\^3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19–23, 2016, Revised Selected Papers (Springer International Publishing, 2016) pp. 415--427

  109. Peter Boyle, Michael Chuvelev, Guido Cossu, Christopher Kelly, Christoph Lehner, Lawrence Meadows, Accelerating HPC codes on Intel(R) Omni-Path architecture networks: From particle physics to machine learning (2017) arXiv:1711.04883 [cs.DC]

  110. Peter A Boyle, PoS LATTICE2016, 013 (2017) arXiv:1702.00208 [hep-lat]

    Google Scholar 

  111. E. Strohmaier, H. Simon, J. Dongarra, M. Meuer, Top 500 List, November 2018, https://www.top500.org/lists/2018/11 (2018)

  112. NERSC, Perlmutter Web Page, http://www.nersc.gov/systems/perlmutter/

  113. ALCF, Aurora, https://aurora.alcf.anl.gov/

  114. OLCF, Frontier: OLCF’s Exascale Future, https://www.olcf.ornl.gov/2018/02/13/frontier-olcfs-exascale-future

  115. ALCF, ALCF Aurora 2021 Early Science Program: Data and Learning Call For Proposals, https://www.alcf.anl.gov/alcf-aurora-2021-early-science-program-data-and-learning-call-proposals

  116. T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat, M. Houston, Exascale deep learning for climate analytics, arXiv:1810.01993 [cs.DC] (2018)

  117. Intel Corporation, Intel unveils strategy for state-of-the-art artificial intelligence, https://newsroom.intel.com/news-releases/intel-ai-day-news-release/

  118. Peter A. Boyle, Comput. Phys. Commun. 180, 2739 (2009)

    ADS  Google Scholar 

  119. A.V. Pochinsky, Möbius domain wall fermion inverter, http://www.mit.edu/avp/mdwf

  120. H. Carter Edwards, Christian R. Trott, Daniel Sunderland, J. Parallel Distrib. Comput. 74, 3202 (2014)

    Google Scholar 

  121. B. Joó, mg_proto: a prototype multi-grid library for QCD, https://github.com/jeffersonlab/mg_proto

  122. Peter Boyle, Azusa Yamaguchi, Guido Cossu, Antonin Portelli, Grid: A next generation data parallel C++ QCD library arXiv:1512.03487 [hep-lat] (2015)

  123. Xiao-Yong Jin, James C. Osborn, PoS ICHEP2016, 187 (2016) arXiv:1612.02750 [hep-lat]

    Google Scholar 

  124. Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint Richardson, Charles K. Fisher, David J. Schwab, A high-bias, low-variance introduction to machine learning for physicists arXiv:1803.08823 [physics.comp-ph] (2018)

  125. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org

  126. M.S. Albergo, G. Kanwar, P.E. Shanahan, Phys. Rev. D 100, 034515 (2019) arXiv:1904.12072 [hep-lat]

    ADS  Google Scholar 

  127. Phiala E. Shanahan, Daniel Trewartha, William Detmold, Machine learning action parameters in lattice quantum chromodynamics arXiv:1801.05784 [hep-lat] (2018)

  128. Akinori Tanaka, Akio Tomiya, Towards reduction of autocorrelation in HMC by machine learning arXiv:1712.03893 [hep-lat] (2017)

  129. Lei Wang, Phys. Rev. E 96, 051301 (2017) arXiv:1702.08586 [physics.comp-ph]

    ADS  Google Scholar 

  130. Stefan Beyl, Florian Goth, Fakher F. Assaad, Phys. Rev. B 97, 085144 (2018) arXiv:1708.03661 [cond-mat.str-el]

    ADS  Google Scholar 

  131. Xiao Yan Xu, Yang Qi, Junwei Liu, Liang Fu, Zi Yang Meng, Phys. Rev. B 96, 041119 (2017) arXiv:1612.03804 [cond-mat.str-el]

    ADS  Google Scholar 

  132. Boram Yoon, Estimation of matrix trace using machine learning arXiv:1606.05560 [stat.ML] (2016)

  133. Boram Yoon, Machine learning estimators for lattice QCD observables arXiv:1807.05971 [hep-lat] (2018)

  134. J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431 (2017) arXiv:1605.01735 [cond-mat.str-el]

    Google Scholar 

  135. G. Torlai, R.G. Melko, Phys. Rev. B 94, 165134 (2016) arXiv:1606.02718 [cond-mat.stat-mech]

    ADS  Google Scholar 

  136. K. Chng, J. Carrasquilla, R.G. Melko, E. Khatami, Phys. Rev. X7, 031038 (2017) arXiv:1609.02552 [cond-mat.str-el]

    Google Scholar 

  137. Chian-De Li, Deng-Ruei Tan, Fu-Jiun Jiang, Ann. Phys. 391, 312 (2018) arXiv:1703.02369 [cond-mat.dis-nn]

    ADS  Google Scholar 

  138. Sebastian Johann Wetzel, Manuel Scherzer, Phys. Rev. B 96, 184410 (2017) arXiv:1705.05582 [cond-mat.stat-mech]

    Google Scholar 

  139. Andrei Alexandru, Paulo F. Bedaque, Henry Lamm, Scott Lawrence, Phys. Rev. D 96, 094505 (2017) arXiv:1709.01971 [hep-lat]

    ADS  MathSciNet  Google Scholar 

  140. Yuto Mori, Kouji Kashiwa, Akira Ohnishi, Phys. Rev. D 96, 111501 (2017) arXiv:1705.05605 [hep-lat]

    ADS  Google Scholar 

  141. Yuto Mori, Kouji Kashiwa, Akira Ohnishi, Prog. Theor. Exp. Phys. 2018, 023B04 (2018) arXiv:1709.03208 [hep-lat]

    Google Scholar 

  142. John Preskill, Quantum 2, 79 (2018)

    Google Scholar 

  143. Joseph Carlson, David J. Dean, Morten Hjorth-Jensen, David Kaplan, John Preskill, Kenneth Roche, Martin J. Savage, Matthias Troyer, Quantum computing for theoretical nuclear physics (2018), Institute for Nuclear Theory report 18-008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulwoo Jung.

Additional information

Communicated by U.-G. Meißner

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data have been given proper reference in the text.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joó, B., Jung, C., Christ, N.H. et al. Status and future perspectives for lattice gauge theory calculations to the exascale and beyond. Eur. Phys. J. A 55, 199 (2019). https://doi.org/10.1140/epja/i2019-12919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12919-7

Navigation