Skip to main content
Log in

Band structures in 169Tm and the structures of Tm isotopes around N = 98

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The excited states of 169Tm have been studied via the 169Tm(32S,32S)169Tm* reaction at the beam energy of 164MeV. The \(\gamma\)-rays were detected using the Indian National Gamma Array (INGA) setup, composed of 19 Compton-suppressed clover HPGe detectors. A new level scheme of 169Tm with 11 newly placed \( \gamma\)-rays has been proposed. A band crossing in the \( \pi [541]1/2^{-}\) band and several interband E1 transitions between this and the \( \pi [411]1/2^{+}\) ground-state band have been observed for the first time in this nucleus. The role of the \(N=98\) deformed shell gap has been discussed by comparing the band crossing parameters of the negative parity bands in Tm and other neighboring nuclei. The origin of the interband E1 transitions has been investigated in terms of coupling to octupole degrees of freedom. The shape evolution of the Tm isotopes around \( N=98\) have been studied in the projected and cranked shell model approaches, both of which predict a change in shape from an axial prolate to a triaxial one after band crossing in these nuclei. The new data and the calculations help to understand the unusual structural phenomena reported for the nuclei with \( N=98\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Jensen et al., Nucl. Phys. A 695, 3 (2001)

    Article  ADS  Google Scholar 

  2. M.J. Burns et al., J. Phys. G: Nucl. Part. Phys. 31, S1827 (2005)

    Article  Google Scholar 

  3. S. Olbrich et al., Nucl. Phys. A 342, 133 (1980)

    Article  ADS  Google Scholar 

  4. H.J. Jensen et al., Z. Phys. A 359, 127 (1997)

    Article  ADS  Google Scholar 

  5. D. Barnëoud, C. Foin, S. Andrë, H. Abou-Leila, S.A. Hjorth, Nucl. Phys. A 230, 445 (1974)

    Article  ADS  Google Scholar 

  6. M.P. Robinson et al., Nucl. Phys. A 647, 175 (1999)

    Article  ADS  Google Scholar 

  7. S. Drissi et al., Nucl. Phys. A 483, 153 (1988)

    Article  ADS  Google Scholar 

  8. X. Wang et al., Phys. Rev. C 75, 064315 (2007)

    Article  ADS  Google Scholar 

  9. D.J. Hartley et al., Phys. Rev. Lett. 120, 182502 (2018)

    Article  ADS  Google Scholar 

  10. P. Taras et al., Nucl. Phys. A 289, 165 (1977)

    Article  ADS  Google Scholar 

  11. Carlos E. Vargas, Jorge G. Hirsch, Jerry P. Draayer, Phys. Rev. C 66, 064309 (2002)

    Article  ADS  Google Scholar 

  12. Md.A. Asgar et al., Phys. Rev. C 95, 031304(R) (2017)

    Article  ADS  Google Scholar 

  13. K. Starosta et al., Nucl. Instrum. Methods Phys. Res. A 423, 16 (1999)

    Article  ADS  Google Scholar 

  14. Ch. Droste et al., Nucl. Instrum. Methods Phys. Res. A 378, 518 (1996)

    Article  ADS  Google Scholar 

  15. E.S. Macias et al., Comput. Phys. Commun. 11, 75 (1976)

    Article  ADS  Google Scholar 

  16. S. Nandi et al., Phys. Rev. C 99, 054312 (2019)

    Article  ADS  Google Scholar 

  17. R. Palit et al., Pramana J. Phys. 54, 347 (2000)

    Article  ADS  Google Scholar 

  18. M.A. Jones et al., Nucl. Phys. A 605, 133 (1996)

    Article  ADS  Google Scholar 

  19. S.J. Zhu et al., Phys. Lett. B 357, 273 (1995)

    Article  ADS  Google Scholar 

  20. W. Urban et al., Phys. Rev. C 54, 945 (1996)

    Article  ADS  Google Scholar 

  21. S.J. Zhu et al., Phys. Rev. C 59, 1316 (1999)

    Article  ADS  Google Scholar 

  22. Y.J. Chen et al., Phys. Rev. C 73, 054316 (2006)

    Article  ADS  Google Scholar 

  23. Somapriya Basu et al., Phys. Rev. C 49, 650 (1994)

    Article  ADS  Google Scholar 

  24. M. Riley et al., Phys. Rev. C 51, 1234 (1995)

    Article  ADS  Google Scholar 

  25. W. Nazarewicz, P. Olanders, Nucl. Phys. A 441, 420 (1985)

    Article  ADS  Google Scholar 

  26. K. Hara, Y. Sun, Nucl. Phys. A 529, 445 (1991)

    Article  ADS  Google Scholar 

  27. Y. Sun et al., Phys. Rev. C 80, 054306 (2009)

    Article  ADS  Google Scholar 

  28. P. Ring, P. Schuck, The Nuclear Many-Body Problem, 1st edition (Springer-Verlag Berlin Heidelberg, 1980)

    Book  Google Scholar 

  29. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    Article  ADS  Google Scholar 

  30. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  31. T. Roy et al., Phys. Lett. B 782, 768 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mukherjee.

Additional information

Communicated by C. Ur

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgar, M.A., Mukherjee, G., Roy, T. et al. Band structures in 169Tm and the structures of Tm isotopes around N = 98. Eur. Phys. J. A 55, 175 (2019). https://doi.org/10.1140/epja/i2019-12882-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12882-3

Navigation