Skip to main content
Log in

Absorption of \(\omega\) and \(\phi\) mesons in the inclusive photonuclear reaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The \(\omega\) and \(\phi\) mesons dominantly decay outside the nucleus because their decay length is much larger than the dimension of the nucleus. Therefore, the medium modification of the above mesons is studied through their absorption in the nucleus. CLAS Collaboration at Jefferson Laboratory (Jlab) has investigated the absorption of the \(\omega\) and \( \phi\) mesons by measuring the nuclear transparency ratios for them in the \(\gamma A \rightarrow \omega (\phi) X \rightarrow e^{+}e^{-}X\) reaction. The nuclear transparency ratios for both \(\omega\) and \(\phi\) mesons in the above reactions have been calculated and compared with the experimental findings, reported from Jlab, to estimate the \(\omega\) meson nucleon and \(\phi\) meson nucleon cross sections in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Klimt, M. Lutz, W. Weise, Phys. Lett. B 249, 386 (1990)

    ADS  Google Scholar 

  2. G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991)

    ADS  Google Scholar 

  3. T. Hatsuda, S.H. Lee, Phys. Rev. C 46, R34 (1992)

    ADS  Google Scholar 

  4. CERES Collaboration (Agakichiev et al.), Phys. Lett. B 422, 405 (1998)

    ADS  Google Scholar 

  5. CERES Collaboration (Agakichiev et al.), Eur. Phys. J. C 41, 475 (2005)

    ADS  Google Scholar 

  6. PHENIX Collaboration (A. Toia), Nucl. Phys. A 774, 743 (2006)

    ADS  Google Scholar 

  7. M. Effenberger, E.L. Bratkovskaya, U. Mosel, Phys. Rev. C 60, 044614 (1999)

    ADS  Google Scholar 

  8. Th. Weidmann, E.L. Bratkovskaya, W. Cassing, U. Mosel, Phys. Rev. C 59, 919 (1999)

    ADS  Google Scholar 

  9. M. Effenberger, E.L. Bratkovskaya, W. Cassing, U. Mosel, Phys. Rev. C 60, 027601 (1999)

    ADS  Google Scholar 

  10. M.C. Birse, J. Phys. G 20, 1537 (1994)

    ADS  Google Scholar 

  11. Ye.S. Golubeva, L.A. Kondratyuk, W. Cassing, Nucl. Phys. A 625, 832 (1997)

    ADS  Google Scholar 

  12. S. Das, Eur. Phys. J. A 49, 123 (2013)

    ADS  Google Scholar 

  13. S. Das, Phys. At. Nucl. 78, 246 (2015)

    Google Scholar 

  14. F. Riek, R. Rapp, Y. Oh, T.-S.H. Lee, Phys. Rev. C 82, 015202 (2010)

    ADS  Google Scholar 

  15. P. Mülich, U. Mosel, Nucl. Phys. A 773, 156 (2006)

    ADS  Google Scholar 

  16. P. Mülich, V. Shklyar, S. Leupold, U. Mosel, M. Post, Nucl. Phys. A 780, 187 (2006)

    ADS  Google Scholar 

  17. S. Das, Phys. Rev. C 83, 064608 (2011)

    ADS  Google Scholar 

  18. D. Cabrera, L. Roca, E. Oset, H. Toki, M.J. Vicente Vacas, Nucl. Phys. A 733, 130 (2004)

    ADS  Google Scholar 

  19. V.K. Magas, L. Roca, E. Oset, Phys. Rev. C 71, 065202 (2005)

    ADS  Google Scholar 

  20. P. Gubler, W. Weise, Phys. Lett. B 751, 396 (2015)

    ADS  Google Scholar 

  21. CBELSA/TAPS Collaboration (D. Trnka et al.), Phys. Rev. Lett. 94, 192303 (2005)

    Google Scholar 

  22. CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Rev. C 82, 035209 (2010)

    ADS  Google Scholar 

  23. CBELSA/TAPS Collaboration (M. Nanova et al.), Eur. Phys. J. A 47, 16 (2011)

    Google Scholar 

  24. CBELSA/TAPS Collaboration (M. Thiel et al.), Eur. Phys. J. A 49, 132 (2018)

    Google Scholar 

  25. M. Naruki et al., Phys. Rev. Lett. 96, 092301 (2006)

    ADS  Google Scholar 

  26. KEK-PS E325 Collaboration (R. Muto et al.), Phys. Rev. Lett. 98, 042501 (2007)

    Google Scholar 

  27. CBELSA/TAPS Collaboration (M. Kotulla et al.), Phys. Rev. Lett. 100, 192302 (2008)

    Google Scholar 

  28. CBELSA/TAPS Collaboration (M. Kotulla et al.), Phys. Rev. Lett. 114, 199903 (2015)

    ADS  Google Scholar 

  29. CBELSA/TAPS Collaboration (S. Friedrich et al.), Eur. Phys. J. A 52, 297 (2016)

    Google Scholar 

  30. A. Polyanskiy et al., Phys. Lett. B 695, 74 (2011)

    ADS  Google Scholar 

  31. M. Hartmann et al., Phys. Rev. C 85, 035206 (2012)

    ADS  Google Scholar 

  32. V. Metag, M. Nanova, E.Ya. Paryev, Prog. Part. Nucl. Phys. 97, 199 (2017)

    ADS  Google Scholar 

  33. CLAS Collaboration (R. Nasseripour et al.), Phys. Rev. Lett. 99, 262302 (2007)

    Google Scholar 

  34. CLAS Collaboration (M.H. Wood et al.), Phys. Rev. C 78, 015201 (2008)

    Google Scholar 

  35. CLAS Collaboration (M.H. Wood et al.), Phys. Rev. Lett. 105, 112301 (2010)

    Google Scholar 

  36. T. Ishikawa et al., Phys. Lett. B 608, 215 (2005)

    ADS  Google Scholar 

  37. L. Frankfurt, M. Strikman, M. Zhalov, Phys. Rev. C 67, 034901 (2003)

    ADS  Google Scholar 

  38. A. Pautz, G. Shaw, Phys. Rev. C 57, 2648 (1998)

    ADS  Google Scholar 

  39. G.T. Howell, G.A. Miller, Phys. Rev. C 88, 035202 (2013)

    ADS  Google Scholar 

  40. R.J. Glauber, in Lectures in Theoretical Physics, Vol. 1, edited by W.E. Brittin (Interscience, New York, 1959) p. 315

  41. J.M. Eisenberg, D.S. Kolton, Theory of Meson Interaction with Nuclei (John Wiley & Sons, New York, 1980) p. 158

  42. T.H. Bauer, R.D. Spital, D.R. Yennie, F.M. Pipkin, Rev. Mod. Phys. 50, 261 (1978) 51

    ADS  Google Scholar 

  43. S. Das, Nucl. Phys. A 781, 509 (2007)

    ADS  Google Scholar 

  44. E.L. Bratkovskaya, W. Cassing, M. Effenberger, U. Mosel, Nucl. Phys. A 653, 301 (1999)

    ADS  Google Scholar 

  45. D.I. Sober et al., Nucl. Instrum. Methods A 440, 263 (2000)

    ADS  Google Scholar 

  46. M. Kaskulov, E. Hernandez, E. Oset, Eur. Phys. J. A 31, 245 (2007)

    ADS  Google Scholar 

  47. S. Das, Int. J. Mod. Phys. 27, 1850057 (2018)

    ADS  Google Scholar 

  48. A. Sibirtsev, H.-W. Hammer, U.-G. Meißner, A.W. Thomas, Eur. Phys. J. A 29, 209 (2006)

    ADS  Google Scholar 

  49. J. Barth et al., Eur. Phys. J. A 18, 117 (2003)

    ADS  Google Scholar 

  50. J. Barth et al., Eur. Phys. J. A 17, 269 (2003)

    ADS  Google Scholar 

  51. T. Mibe et al., Phys. Rev. Lett. 95, 182001 (2005)

    ADS  Google Scholar 

  52. A. Sibirtsev, K. Tsushima, S. Krewald, Phys. Rev. C 67, 055201 (2003)

    ADS  Google Scholar 

  53. A. Sibirtsev, Ch. Elster, J. Speth, arXiv:0203044 [nucl-th]

  54. G.I. Lykasov, W. Cassing, A. Sibirtsev, M.V. Rzjanin, Eur. Phys. J. A 6, 71 (1999)

    ADS  Google Scholar 

  55. S. Das, Phys. Rev. C 96, 034616 (2017)

    ADS  Google Scholar 

  56. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014) http://pdg.lbl.gov/xsect/contents.html

    Google Scholar 

  57. M. Lacombe et al., Phys. Lett. B 101, 139 (1981)

    ADS  Google Scholar 

  58. C.W. De Jager, H. De Vries, C. De Vries, At. Data Nucl. Data Tables 14, 479 (1974)

    ADS  Google Scholar 

  59. J.J. Sakurai, Phys. Rev. Lett. 8, 300 (1962)

    ADS  Google Scholar 

  60. D.M. Manley, R.A. Arndt, Y. Goradia, V.L. Teplitz, Phys. Rev. D 30, 904 (1984)

    ADS  Google Scholar 

  61. D.M. Manley, Phys. Rev. D 51, 4837 (1995)

    ADS  Google Scholar 

  62. D.M. Manley, Int. J. Mod. Phys. A 18, 441 (2003)

    ADS  Google Scholar 

  63. E.Ya. Paryev, Eur. Phys. J. A 23, 453 (2005)

    ADS  Google Scholar 

  64. CBELSA/TAPS Collaboration (F. Dietz et al.), Eur. Phys. J. A 51, 6 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Das.

Additional information

Communicated by R. Rapp

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The experimental data are not generated in this study. They are taken from the references quoted in the text.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S. Absorption of \(\omega\) and \(\phi\) mesons in the inclusive photonuclear reaction. Eur. Phys. J. A 55, 186 (2019). https://doi.org/10.1140/epja/i2019-12875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12875-2

Navigation