Skip to main content
Log in

Light (anti)nuclei production in Cu+Cu collisions at \(\sqrt{s_{NN}} = 200\) GeV

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The production of light (anti)nuclei is investigated using the dynamically constrained phase-space coalescence model based on the final-state hadrons generated by the PACIAE model in Cu+Cu collisions at \( \sqrt{s_{\mathrm{NN}}}=200\) GeV with \( \vert\eta\vert < 0.5\) and \( 0 < p_{T} < 8\) GeV/c. The results show that there is a strong centrality dependence of yields of d, \( \overline{d}\), 3He, \({}^{3}\overline{\mathrm{He}}\), 4He, and \({}^{4}\overline{\mathrm{He}}\), i.e., their yields decrease rapidly with the increase of centrality, and the greater the mass, the greater the dependence, whereas their ratios of antinucleus to nucleus remain constant as the centrality increases. The coalescence parameter \( B_{A}\) lightly decreases with the increasing of \( N_{part}\). In addition, the yields of (anti)nuclei are strongly dependent on the mass of the (anti)nuclei, indicating that the (anti)nuclei produced have mass scaling properties in high-energy heavy-ion collisions. Our results are consistent with the STAR experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, Proc. R. Soc. London A 117, 610 (1928)

    ADS  Google Scholar 

  2. O. Chamberlain et al., Phys. Rev. 100, 947 (1955)

    ADS  Google Scholar 

  3. B. Cork, G.R. Lambertson, O. Piccioni et al., Phys. Rev. 104, 1193 (1956)

    ADS  Google Scholar 

  4. T. Massam, T. Muller, B. Righini et al., Nuovo Cimento 39, 10 (1965)

    ADS  Google Scholar 

  5. D.E. Dorfan, J. Eades, L.M. Lederman et al., Phys. Rev. Lett. 14, 1003 (1965)

    ADS  Google Scholar 

  6. N.K. Vishnevsky et al., Yad. Fiz. 20, 694 (1974)

    Google Scholar 

  7. Y.M. Antipov et al., Yad. Fiz. 12, 311 (1970)

    Google Scholar 

  8. STAR Collaboration (B.I. Abelev et al.), Science 328, 58 (2010)

    Google Scholar 

  9. STAR Collaboration (H. Agakishiev et al.), Nature 473, 353 (2011)

    ADS  Google Scholar 

  10. St. Mrówczyński, arXiv:1904.08320v1[nucl-th] (2019)

  11. St. Mrówczyński, Acta Phys. Pol. B 48, 707 (2017)

    ADS  Google Scholar 

  12. Sy. Bazak, St. Mrówczyński, Mod. Phys. Lett. A 33, 1850142 (2018)

    ADS  Google Scholar 

  13. P. Liu, J.H. Chen, Y.G. Ma, S. Zhang, Nucl. Sci. Tech. 28, 55 (2017)

    Google Scholar 

  14. L. Xue, Y.G. Ma, J.H. Chen et al., Phys. Rev. C 85, 064912 (2012)

    ADS  Google Scholar 

  15. C.S. Zhou, Y.G. Ma, S. Zhang, Eur. Phys. J. A 52, 354 (2016)

    ADS  Google Scholar 

  16. N. Shah, Y.G. Ma, J.H. Chen et al., Phys. Lett. B 754, 6 (2016)

    ADS  Google Scholar 

  17. L.L. Zhu, C.M. Ko, X.J. Yin, Phys. Rev. C 92, 064911 (2015)

    ADS  Google Scholar 

  18. J. Steinheimer, K. Gudima, A. Botvina et al., Phys. Lett. B 714, 85 (2012)

    ADS  Google Scholar 

  19. R. Mattiello, H. Sorge, H. Stöcker, W. Greiner, Phys. Rev. C 55, 1443 (1997)

    ADS  Google Scholar 

  20. L.W. Chen, C.M. Ko, Phys. Rev. C 73, 044903 (2006)

    ADS  Google Scholar 

  21. S. Zhang, J.H. Chen, H. Crawford et al., Phys. Lett. B 684, 224 (2010)

    ADS  Google Scholar 

  22. V. Topor Pop, S. Das Gupta, Phys. Rev. C 81, 054911 (2010)

    ADS  Google Scholar 

  23. A. Andronic et al., Phys. Lett. B 697, 203 (2011)

    ADS  Google Scholar 

  24. J.H. Chen, D. Keane, Y.G. Ma et al., Phys. Rep. 760, 1 (2018)

    ADS  MathSciNet  Google Scholar 

  25. H.L. Lao, F.H. Liu, B.C. Li et al., Nucl. Sci. Tech. 29, 164 (2018)

    Google Scholar 

  26. X.H. Jin, J.H. Chen, Y.G. Ma et al., Nucl. Sci. Tech. 29, 54 (2018)

    Google Scholar 

  27. H.L. Lao, F.H. Liu, B.C. Li, M.Y. Duan, Nucl. Sci. Tech. 29, 82 (2018)

    Google Scholar 

  28. B.H. Sa, D.M. Zhou, Y.L. Yan et al., Comput. Phys. Commun. 183, 333 (2012)

    ADS  Google Scholar 

  29. STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 034910 (2011)

    Google Scholar 

  30. STAR Collaboration (G. Agakishiev et al.), Phys. Rev. Lett. 108, 072301 (2012)

    Google Scholar 

  31. STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 673, 183 (2009)

    ADS  Google Scholar 

  32. Y.L. Yan, G. Chen, X.M. Li et al., Phys. Rev. C 85, 024907 (2012)

    ADS  Google Scholar 

  33. G. Chen, Y.L. Yan, D.S. Li et al., Phys. Rev. C 86, 054910 (2012)

    ADS  Google Scholar 

  34. G. Chen, H. Chen, J. Wu, D.S. Li, M.J. Wang, Phys. Rev. C 88, 034908 (2013)

    ADS  Google Scholar 

  35. B.L. Combridge, J. Kripfgang, J. Ranft, Phys. Lett. B 70, 234 (1977)

    ADS  Google Scholar 

  36. T. Sjöstrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006)

    ADS  Google Scholar 

  37. G. Chen, H. Chen, M.J. Wang et al., J. Phys. G: Nucl. Part. Phys. 41, 115102 (2014)

    ADS  Google Scholar 

  38. Z.J. Dong, Q.Y. Wang, G. Chen et al., Eur. Phys. J. A 54, 144 (2018)

    ADS  Google Scholar 

  39. Z.L. She, G. Chen et al., Eur. Phys. J. A 52, 93 (2016)

    Google Scholar 

  40. P. Sittiketkorn, K. Tomuang et al., Phys. Rev. C 96, 064002 (2017)

    ADS  Google Scholar 

  41. E864 Collaboration (T.A. Armstrong et al.), Phys. Rev. C 70, 024902 (2004)

    Google Scholar 

  42. S. Hamieh, K. Redlich, A. Tounsi, Phys. Lett. B 486, 61 (2000)

    ADS  Google Scholar 

  43. H. Nemura, Y. Suzuki, Y. Fujiwara, C. Nakamoto, Prog. Theor. Phys. 103, 929 (2000)

    ADS  Google Scholar 

  44. J. Zhou, Light (anti-)nuclei production in the STAR experiment at RHIC, PhD Thesis, Rice University (2009) unpublished

  45. T.A. Armstrong et al., Phys. Rev. Lett. 83, 5431 (1999)

    ADS  Google Scholar 

  46. P. Braun-Munzinger, J. Stachel, Nature 448, 302 (2007)

    ADS  Google Scholar 

  47. H. Sato, K. Yazaki, Phys. Lett. B 98, 153 (1981)

    ADS  Google Scholar 

  48. H. Liu, Production of Meson, Baryon and Light Nuclei $(A=2,3)$: Investigating Freeze-Out Dynamics and Roles of Energetic Quarks and Gluons in Au+Au Collisions at RHIC, PhD Thesis, Univ. Sci. Technol. China (2007)

  49. E864 Collaboration (T.A. Armstrong et al.), Phys. Rev. Lett. 85, 2685 (2000)

    Google Scholar 

  50. P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995)

    ADS  Google Scholar 

  51. H. Van Hecke, H. Sorge, N. Xu, Phys. Rev. Lett. 81, 5764 (1998)

    ADS  Google Scholar 

  52. R. Scheibl, U. Heinz, Phys. Rev. C 59, 1585 (1999)

    ADS  Google Scholar 

  53. H.H. Gutbrod et al., Phys. Rev. Lett. 37, 667 (1976)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Additional information

Communicated by Xin-Nian Wang

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Fx., Chen, G., Zhe, Zl. et al. Light (anti)nuclei production in Cu+Cu collisions at \(\sqrt{s_{NN}} = 200\) GeV. Eur. Phys. J. A 55, 160 (2019). https://doi.org/10.1140/epja/i2019-12851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12851-x

Navigation