Skip to main content
Log in

A digital pulse fitting method for the \( \alpha\) decay studies of short-lived nuclei

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

When studying short-lived nuclei via \( \alpha\) spectroscopic methods at recoil separators, the decay events tend to happen immediately after the recoil implantations or the decays of parent nuclei and therefore pile-up pulses are often encountered. Digital acquisition systems now allow the recording of waveforms of pile-up events rather than rejecting them as in traditional analog systems. Therefore, the extraction of the energy and time information stored in pile-up events with suitable precision is of great significance to the measurements of short-lived nuclei. In this paper, a pulse shape fitting method for processing pile-up events from silicon detectors are proposed. The method is developed on the basis of an improved analytical function for describing the shapes of preamplifier signals. The validity of the method is demonstrated by the experimental data of some short-lived nuclei produced in the reaction 40Ca + 184W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.B. Yang et al., Phys. Lett. B 777, 212 (2018)

    Article  ADS  Google Scholar 

  2. T.H. Huang et al., Phys. Rev. C 96, 014324 (2017)

    Article  ADS  Google Scholar 

  3. M.D. Sun et al., Phys. Lett. B 771, 303 (2017)

    Article  ADS  Google Scholar 

  4. J. Khuyagbaatar et al., Phys. Rev. Lett. 115, 242502 (2015)

    Article  ADS  Google Scholar 

  5. V.T. Jordanov, G.F. Knoll, Nucl. Instrum. Methods Phys. Res. A 345, 337 (1994)

    Article  ADS  Google Scholar 

  6. V.T. Jordanov et al., Nucl. Instrum. Methods Phys. Res. A 353, 261 (1994)

    Article  ADS  Google Scholar 

  7. T. Kihm, V.F. Bobrakov, H.V. Klapdor-Kleingrothaus, Nucl. Instrum. Methods Phys. Res. A 498, 334 (2003)

    Article  ADS  Google Scholar 

  8. M. Nakhostin, IEEE Trans. Nucl. Sci. 58, 2378 (2011)

    Article  ADS  Google Scholar 

  9. MC2Analyzer User Manual, https://doi.org/www.caen.it

  10. H. Zhang et al., Nucl. Sci. Tech. 24, 060407 (2013)

    Google Scholar 

  11. M. Karny et al., Phys. Rev. Lett. 90, 012502 (2003)

    Article  ADS  Google Scholar 

  12. R. Grzywacz et al., Nucl. Instrum. Methods Phys. Res. B 261, 1103 (2007)

    Article  ADS  Google Scholar 

  13. S.N. Liddick, I.G. Darby, R.K. Grzywacz, Nucl. Instrum. Methods Phys. Res. A 669, 70 (2012)

    Article  ADS  Google Scholar 

  14. R. Grzywacz et al., Eur. Phys. J. A 25, 145 (2005)

    Article  Google Scholar 

  15. S.N. Liddick et al., Phys. Rev. Lett. 97, 082501 (2006)

    Article  ADS  Google Scholar 

  16. I.G. Darby et al., Phys. Rev. Lett. 105, 162502 (2010)

    Article  ADS  Google Scholar 

  17. S. Suchyta et al., Phys. Rev. C 89, 021301(R) (2014)

    Article  ADS  Google Scholar 

  18. N.T. Brewer et al., Phys. Rev. C 98, 024317 (2018)

    Article  ADS  Google Scholar 

  19. X.L. Luo et al., Nucl. Instrum. Methods Phys. Res. A 897, 59 (2018)

    Article  ADS  Google Scholar 

  20. M. Nakhostin et al., Rev. Sci. Instrum. 81, 103507 (2010)

    Article  ADS  Google Scholar 

  21. F. Belli et al., Nucl. Instrum. Methods Phys. Res. A 595, 512 (2008)

    Article  ADS  Google Scholar 

  22. T. Oishi, M. Baba, J. Nucl. Sci. Technol. 45, 375 (2008)

    Article  Google Scholar 

  23. W. Guo, R.P. Gardner, C.W. Mayo, Nucl. Instrum. Methods Phys. Res. A 544, 668 (2005)

    Article  ADS  Google Scholar 

  24. S. Marrone, Nucl. Instrum. Methods Phys. Res. B 213, 246 (2004)

    Article  ADS  Google Scholar 

  25. Z. Guzik, T. Krakowski, Nukleonika 58, 333 (2013)

    Google Scholar 

  26. Z.Y. Zhang et al., Nucl. Instrum. Methods Phys. Res. B 317, 315 (2013)

    Article  ADS  Google Scholar 

  27. Digitizer V1724, https://doi.org/www.caen.it

  28. R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997)

    Article  ADS  Google Scholar 

  29. K.-H. Schmidt et al., Z. Phys. A 316, 19 (1984)

    Article  ADS  Google Scholar 

  30. Chart of Nuclides, https://doi.org/www.nndc.bnl.gov/chart

  31. A. Lopez-Martens et al., Eur. Phys. J. A 50, 132 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. G. Gan.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H.B., Gan, Z.G., Zhang, Z.Y. et al. A digital pulse fitting method for the \( \alpha\) decay studies of short-lived nuclei. Eur. Phys. J. A 55, 8 (2019). https://doi.org/10.1140/epja/i2019-12684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12684-7

Navigation