Skip to main content
Log in

A new generalised solution to generate anisotropic compact star models in the Karmarkar space-time manifold

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In the present article a new generalised solution is obtained for anisotropic matter configuration using Karmarkar’s condition. The solution is used to model the interior structure of anisotropic relativistic objects as it satisfies all necessary physical conditions. The pressure, density and metric potentials are free from any singularities and exhibit well behaved nature inside the anisotropic fluid sphere. The TOV equation is well maintained within the stellar configuration and all energy conditions hold good. The causality condition is well satisfied for our stellar models and stability of compact star models is further verified via Herrera’s cracking method. Harrison-Zeldovich-Novikov criterion for stability is also satisfied by our model. The adiabatic index is greater than \(\frac{4}{3}\) throughout the stellar interior and the compactification factor also lies within the Buchdahl limit i.e.\(M/R \le 4/9\). We investigate the models for two compact stars PSRJ0348+0432 and SAX J1808.4-3658 within the framework of the general theory of relativity. The estimated mass and radius are in close agreement with the observational data. we extensively study the solutions corresponding to compact star PSRJ0348+0432 for \( n = 0, 1, 2, 3, 4, 4.5\) and the detailed graphical analysis is provided to substantiate the viability of the compact star model. One specific feature of our solution is that for large values of n, i.e. for \( n > 5\) solution reduces to Finch and Skea type solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alford, M. Braby, M.W. Paris, S. Reddy, Astrophys. J. 629, 969 (2005)

    Article  ADS  Google Scholar 

  2. A. Drago, A. Lavango, G. Pagliara, Phys. Rev. D 89, 043014 (2014)

    Article  ADS  Google Scholar 

  3. R. Ruderman, Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  4. F. Weber, Pulsars as Astrophysical Observatories for Nuclear and Particle Physics (Institute of Physics, Bristol, 1999)

  5. A.I. Sokolov, J. Exp. Theor. Phys. 79, 1137 (1980)

    Google Scholar 

  6. R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972)

    Article  ADS  Google Scholar 

  7. K.R. Karmarkar, Proc. Indian Acad. Sci. 27, 56 (1948)

    Article  Google Scholar 

  8. S.N. Pandey, S.P. Sharma, Gen. Relativ. Grav. 14, 113 (1981)

    Article  ADS  Google Scholar 

  9. K. Schwarzschild, Sitz. Deut. Akad. Wiss. Math. Phys. Berlin 24, 424 (1916)

    Google Scholar 

  10. K.N. Singh et al., Astrophys. Space Sci. 361, 173 (2016b)

    Article  ADS  Google Scholar 

  11. K.N. Singh et al., Int. J. Mod. Phys. D 25, 1650099 (2016c)

    Article  ADS  Google Scholar 

  12. K.N. Singh, N. Pant, Indian J. Phys. 90, 843 (2016a)

    Article  ADS  Google Scholar 

  13. K.N. Singh, N. Pant, Astrophys. Space Sci. 361, 177 (2016b)

    Article  ADS  Google Scholar 

  14. R. Sharma, B.S. Ratanpal, arXiv:1307.1439v1 (2013)

  15. M. Malaver, Front. Math. Appl. 1, 9 (2014)

    Google Scholar 

  16. M. Malaver, Int. J. Mod. Phys. Appl. 2, 1 (2015)

    Google Scholar 

  17. F.S.N. Lobo, Class. Quantum Grav. 23, 1525 (2006)

    Article  ADS  Google Scholar 

  18. R. Sharma, S.D. Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007)

    Article  ADS  Google Scholar 

  19. K. Komathiraj, S.D. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2007)

    Article  ADS  Google Scholar 

  20. Piyali Bhar, Muhmmad Hasan Murad, Astrophys. Space Sci. 361, 334 (2016)

    Article  ADS  Google Scholar 

  21. Piyali Bhar, Astrophys. Space Sci. 359, 41 (2015)

    Article  ADS  Google Scholar 

  22. Rahaman, S. Ray, A.K. Jafry, K. Chakraborty, Phys. Rev. D 82, 104055 (2010)

    Article  ADS  Google Scholar 

  23. S. Thirukkanesh, F.C. Ragel, Pramana J. Phys. 78, 687 (2012)

    Article  ADS  Google Scholar 

  24. R. Tikekar, V.O. Thomas, Pramana J. Phys. 52, 237 (1999)

    Article  ADS  Google Scholar 

  25. R. Tikekar, K. Jotania, Pramana J. Phys. 68, 397 (2007)

    Article  ADS  Google Scholar 

  26. K.N. Singh et al., Mod. Phys. Lett. A 32, 1750093 (2017)

    Article  ADS  Google Scholar 

  27. S.K. Maurya, Eur. Phys. J. A 53, 89 (2017)

    Article  ADS  Google Scholar 

  28. Ksh. Newton Singh, Neeraj Pant, Eur. Phys. J. C 76, 524 (2016)

    Article  ADS  Google Scholar 

  29. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  30. H. Abreu et al., Class. Quantum Grav. 24, 4631 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  32. L. Herrera et al., Astrophys. J. 234, 1094 (1979)

    Article  ADS  Google Scholar 

  33. R. Chan et al., Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  34. B.K. Harrison, Gravitational Theory and Gravitational Collapse (University of Chicago Press, 1965)

  35. Ya.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics, Vol. 1, Stars and Relativity (University of Chicago Press, 1971)

  36. S. Bhattacharyya, Astron. Astrophys. arXiv:astro-ph/0112175v1 (2001)

  37. T.M. Darias et al., Mon. Not. R. Astron. Soc. 394, L136 (2009)

    Article  ADS  Google Scholar 

  38. M.R. Finch, J.E.F. Skea, Class. Quantum Grav. 6, 467 (1989)

    Article  ADS  Google Scholar 

  39. L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Fuloria.

Additional information

Communicated by L. Tolos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuloria, P. A new generalised solution to generate anisotropic compact star models in the Karmarkar space-time manifold. Eur. Phys. J. A 54, 179 (2018). https://doi.org/10.1140/epja/i2018-12615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12615-2

Navigation