Skip to main content
Log in

Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using \(\beta\)-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars \(\sim 2M_{\odot}\). The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, \(R\geq 3.69 + 3.44M/M_{\odot}\). Present calculations suggest that the crustal fraction of the total moment of inertia can be \(\sim 6.3\)% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  2. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  3. S.L. Sapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley-Interscience, New York, 1983)

  4. J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, Science 311, 1901 (2006)

    Article  ADS  Google Scholar 

  5. A.G. Lyne, F. Graham-Smith, Pulsar Astronomy, 2nd edition, in Cambridge Astrophysics Series, Vol. 31 (Cambridge University Press, Cambridge, UK, 1998) Chapt. 12, Sect. 4

  6. A.G. Lyne, Pulsars: Problems and Progress (IAU Colloq. 160), edited by S. Johnston, M.A. Walker, M. Bailes (ASP, San Francisco, CA, USA, 1996) p. 73

  7. V.M. Kaspi, J.R. Lackey, D. Chakrabarty, Astrophys. J. 537, L31 (2000)

    Article  ADS  Google Scholar 

  8. D. Atta, S. Mukhopadhyay, D.N. Basu, Indian J. Phys. 91, 235 (2017)

    Article  ADS  Google Scholar 

  9. V.L. Ginzburg, D.A. Kirzhnits, Sov. JETP 20, 1346 (1965)

    Google Scholar 

  10. D. Pines, M.A. Alpar, Nature 316, 27 (1985)

    Article  ADS  Google Scholar 

  11. P.W. Anderson, N. Itoh, Nature 256, 25 (1975)

    Article  ADS  Google Scholar 

  12. Chamel Nicolas, PoS MPCS2015, 013 (2016)

    Google Scholar 

  13. R.I. Epstein, G. Baym, Astrophys. J. 387, 276 (1992)

    Article  ADS  Google Scholar 

  14. M.A. Alpar, H.F. Chau, K.S. Cheng, D. Pines, Astrophys. J. 409, 345 (1993)

    Article  ADS  Google Scholar 

  15. B. Link, R.I. Epstein, Astrophys. J. 457, 844 (1996)

    Article  ADS  Google Scholar 

  16. M. Ruderman, T. Zhu, K. Chen, Astrophys. J. 492, 267 (1998)

    Article  ADS  Google Scholar 

  17. A. Sedrakian, J.M. Cordes, Mon. Not. R. Astron. Soc. 307, 365 (1999)

    Article  ADS  Google Scholar 

  18. J. Piekarewicz, F.J. Fattoyev, C.J. Horowitz, Phys. Rev. C 90, 015803 (2014)

    Article  ADS  Google Scholar 

  19. W.G. Newton et al., Mon. Not. R. Astron. Soc. 454, 4400 (2015)

    Article  ADS  Google Scholar 

  20. Noël Martin, Michael Urban, Phys. Rev. C 92, 015803 (2015)

    Article  ADS  Google Scholar 

  21. C.J. Pethick, D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci. 45, 429 (1995)

    Article  ADS  Google Scholar 

  22. F. Douchin, P. Haensel, Phys. Lett. B 485, 107 (2000)

    Article  ADS  Google Scholar 

  23. F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)

    Article  ADS  Google Scholar 

  24. J. Carriere, C.J. Horowitz, J. Piekarewicz, Astrophys. J. 593, 463 (2003)

    Article  ADS  Google Scholar 

  25. B.K. Agrawal, S. Shlomo, V. Kim Au, Phys. Rev. C 72, 014310 (2005)

    Article  ADS  Google Scholar 

  26. D. Atta, D.N. Basu, Phys. Rev. C 90, 035802 (2014)

    Article  ADS  Google Scholar 

  27. S. Kubis, Phys. Rev. C 70, 065804 (2004)

    Article  ADS  Google Scholar 

  28. S. Kubis, Phys. Rev. C 76, 025801 (2007)

    Article  ADS  Google Scholar 

  29. A. Worley, P.G. Krastev, B.A. Li, Astrophys. J. 685, 390 (2008)

    Article  ADS  Google Scholar 

  30. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition (John Wiley & Sons, New York, 1985)

  31. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  32. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  33. B. Link, R.I. Epstein, J.M. Lattimer, Phys. Rev. Lett. 83, 3362 (1999)

    Article  ADS  Google Scholar 

  34. B.-J. Cai, L.W. Chen, Phys. Rev. C 85, 024302 (2012)

    Article  ADS  Google Scholar 

  35. Ch.C. Moustakidis, T. Niksic, G.A. Lalazisis, D. Vretenar, P. Ring, Phys. Rev. C 81, 065803 (2010)

    Article  ADS  Google Scholar 

  36. T.R. Routray, X. Viñas, D.N. Basu, S.P. Pattnaik, M. Centelles, L. Robledo, B. Behera, J. Phys. G: Nucl. Part. Phys. 43, 105101 (2016)

    Article  ADS  Google Scholar 

  37. J. Hooker, W.G. Newton, Bao-An Li, Mon. Not. R. Astron. Soc. 449, 3559 (2015)

    Article  ADS  Google Scholar 

  38. T. Delsate, N. Chamel, N. Gürlebeck, A.F. Fantina, J.M. Pearson, C. Ducoin, Phys. Rev. D 94, 023008 (2016)

    Article  ADS  Google Scholar 

  39. A. Li, J.M. Dong, J.B. Wang, R.X. Xu, Astrophys. J. Suppl. Ser. 223, 16 (2016)

    Article  ADS  Google Scholar 

  40. J. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)

    Article  ADS  Google Scholar 

  41. J. Xu, L.W. Chen, B.-A. Li, H.-R. Ma, Astrophys. J. 697, 1549 (2009)

    Article  ADS  Google Scholar 

  42. N. Andersson, K. Glampedakis, W.C.G. Ho, C.M. Espinoza, Phys. Rev. Lett. 109, 241103 (2012)

    Article  ADS  Google Scholar 

  43. N. Chamel, Phys. Rev. Lett. 110, 011101 (2013)

    Article  ADS  Google Scholar 

  44. W.D. Arnett, R.L. Bowers, Astrophys. J. Suppl. 33, 415 (1977)

    Article  ADS  Google Scholar 

  45. M. Dutra, O. Lourenco, J.S.S. Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012)

    Article  ADS  Google Scholar 

  46. P.D. Stevenson, P.M. Goddard, J.R. Stone, M. Dutra, AIP Conf. Proc. 1529, 262 (2013) arXiv:1210.1592

    Article  ADS  Google Scholar 

  47. H. Pais, A. Sulaksono, B.K. Agrawal, C. Providência, Phys. Rev. C 93, 045802 (2016)

    Article  ADS  Google Scholar 

  48. C. Ducoin, J. Margueron, P. Chomaz, Nucl. Phys. A 809, 30 (2008)

    Article  ADS  Google Scholar 

  49. C.J. Horowitz, G. Shen, Phys. Rev. C 78, 015801 (2008)

    Article  ADS  Google Scholar 

  50. R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)

    Article  ADS  Google Scholar 

  51. G. Baym, C.J. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  52. G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971)

    Article  ADS  Google Scholar 

  53. J. Antoniadis et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  54. W.C.G. Ho, N. Andersson, Nat. Phys. 8, 787 (2012)

    Article  Google Scholar 

  55. G.G. Pavlov, V.E. Zavlin, D. Sanwal, V. Burwitz, G.P. Garmire, Astrophys. J. 552, L129 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Madhuri.

Additional information

Communicated by L. Tolos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri, K., Basu, D.N., Routray, T.R. et al. Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction. Eur. Phys. J. A 53, 151 (2017). https://doi.org/10.1140/epja/i2017-12338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12338-x

Navigation