Skip to main content
Log in

On the role of secondary pions in spallation targets

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of \( \sim 90\%\) of the high-energy photons; charged pions participate in \(\sim 40\%\) of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Filges, F. Goldenbaum, Handbook of Spallation Research. Theory, Experiments and Applications (Wiley-VCH, Berlin, 2009)

  2. H. Ait Abderrahim, P. Baeten, D. De Bruyn, J. Heyse, P. Schuurmans, J. Wagemans, Nucl. Phys. News 20, 24 (2010)

    Article  Google Scholar 

  3. T. Enqvist, W. Wlazlo, P. Armbruster et al., Nucl. Phys. A 686, 481 (2001)

    Article  ADS  Google Scholar 

  4. J.-C. David, A. Boudard, J. Cugnon, S. Ghali, S. Leray, D. Mancusi, L. Zanini, Eur. Phys. J. A 49, 29 (2013)

    Article  ADS  Google Scholar 

  5. J.-C. David, D. Filges, F. Gallmeier, M. Khandaker, A. Konobeyev, S. Leray, G. Mank, A. Mengoni, R. Michel, N. Otuka, Y. Yariv, A new benchmark of spallation models, in Shielding Aspects of Accelerators, Targets and Irradiation Facilities - SATIF 10 Workshop Proceedings (OECD Publishing, Geneva, Switzerland, 2011) p. 273

  6. S. Leray, J.-C. David, M. Khandaker, G. Mank, A. Mengoni, N. Otsuka, D. Filges, F. Gallmeier, A. Konobeyev, R. Michel, J. Korean Phys. Soc. 59, 791 (2011)

    Article  Google Scholar 

  7. IAEA-intercomparison, IAEA benchmark of spallation models, http://www-nds.iaea.org/spallations (2009)

  8. C. Guerrero, A. Tsinganis, E. Berthoumieux et al., Eur. Phys. J. A 49, 27 (2013)

    Article  ADS  Google Scholar 

  9. M. Barbagallo, C. Guerrero, A. Tsinganis et al., Eur. Phys. J. A 49, 156 (2013)

    Article  ADS  Google Scholar 

  10. S. Lo Meo, M.A. Cortés-Giraldo, C. Massimi et al., Eur. Phys. J. A 51, 160 (2015)

    Article  ADS  Google Scholar 

  11. J. Lerendegui, S. Lo Meo, C. Guerrero et al., Eur. Phys. J. A 52, 100 (2016)

    Article  ADS  Google Scholar 

  12. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  13. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  14. C.W. Fabjan, F. Gianotti, Rev. Mod. Phys. 75, 1243 (2003)

    Article  ADS  Google Scholar 

  15. A. Boudard, J. Cugnon, S. Leray, C. Volant, Phys. Rev. C 66, 044615 (2002)

    Article  ADS  Google Scholar 

  16. D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, S. Leray, Phys. Rev. C 90, 054602 (2014)

    Article  ADS  Google Scholar 

  17. J.M. Quesada, V. Ivanchenko, A. Ivanchenko, M.A. Cortés-Giraldo, G. Folger, A. Howard, D. Wright, Prog. Nucl. Sci. Technol. 2, 936 (2011)

    Article  Google Scholar 

  18. J.-J. Gaimard, K.-H. Schmidt, Nucl. Phys. A 531, 709 (1991)

    Article  ADS  Google Scholar 

  19. A.R. Junghans, M. de Jong, H.-G. Clerc, A.V. Ignatyuk, G.A. Kudyaev, K.-H. Schmidt, Nucl. Phys. A 629, 635 (1998)

    Article  ADS  Google Scholar 

  20. A. Kelić, M.V. Ricciardi, K.-H. Schmidt, ABLA07 --- towards a complete description of the decay channels of a nuclear system from spontaneous fission to multifragmentation, in Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions (IAEA, Trieste, Italy, 2008) Report INDC(NDC)-0530, p. 181

  21. Th. Aoust, J. Cugnon, Phys. Rev. C 74, 064607 (2006)

    Article  ADS  Google Scholar 

  22. Th. Aoust, J. Cugnon, Eur. Phys. J. A 21, 79 (2004)

    Article  ADS  Google Scholar 

  23. K. Ackerstaff, J. Bisplinghoff, R. Bollmann et al., Nucl. Instrum. Methods A 491, 492 (2002)

    Article  ADS  Google Scholar 

  24. V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Rivoire, Compilation of cross-sections I: $\pi^{+}$ and $\pi^{-}$ induced reactions (CERN, Geneva, 1983) URL https://cds.cern.ch/record/99267

  25. V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Rivoire, Compilation of cross-sections III: $p$ and $\bar{p}$ induced reactions (CERN, Geneva, 1984) URL https://cds.cern.ch/record/101631

  26. S. Pedoux, J. Cugnon, Nucl. Phys. A 866, 16 (2011)

    Article  ADS  Google Scholar 

  27. S. Pedoux, Extension of the Liège intranuclear cascade model to the 2--15 GeV incident energy range, PhD Thesis, University of Liège, Liège, Belgium (2011)

  28. G. Folger, V.N. Ivanchenko, J.P. Wellisch, Eur. Phys. J. A 21, 407 (2004)

    Article  ADS  Google Scholar 

  29. D.H. Wright, M.H. Kelsey, Nucl. Instrum. Methods A 804, 175 (2015)

    Article  ADS  Google Scholar 

  30. M.G. Catanesi, E. Radicioni, R. Edgecock et al., Phys. Rev. C 77, 055207 (2008)

    Article  ADS  Google Scholar 

  31. M. Apollonio, A. Artamonov, A. Bagulya et al., Phys. Rev. C 80, 065207 (2009)

    Article  ADS  Google Scholar 

  32. A. Boudard, J. Cugnon, J.-C. David, S. Leray, D. Mancusi, Phys. Rev. C 87, 014606 (2013)

    Article  ADS  Google Scholar 

  33. E. Oset, L.L. Salcedo, Nucl. Phys. A 468, 631 (1987)

    Article  ADS  Google Scholar 

  34. B. ter Haar, R. Malfliet, Phys. Rep. 149, 207 (1987)

    Article  ADS  Google Scholar 

  35. Y. Yariv, Z. Fraenkel, Phys. Rev. C 20, 2227 (1979)

    Article  ADS  Google Scholar 

  36. Y. Yariv, Z. Fraenkel, Phys. Rev. C 24, 488 (1981)

    Article  ADS  Google Scholar 

  37. Harp-cdp website, http://harp-cdp.web.cern.ch/

  38. A. Bolshakova, I. Boyko, G. Chelkov et al., Eur. Phys. J. C 66, 57 (2010)

    Article  ADS  Google Scholar 

  39. I. Chemakin, V. Cianciolo, B.A. Cole et al., Phys. Rev. C 65, 024904 (2002)

    Article  ADS  Google Scholar 

  40. J. Apostolakis, G. Folger, V. Grichine et al., J. Phys.: Conf. Ser. 160, 012073 (2009)

    Google Scholar 

  41. E. Fermi, E. Teller, Phys. Rev. 72, 399 (1947)

    Article  ADS  Google Scholar 

  42. T. Koi, Shielding benchmarks for Geant4 version 10, in Proceedings of the Twelfth Workshop on Shielding Aspects of Accelerators, Targets and Irradiation Facilities --- SATIF 12 (Nuclear Energy Agency, Batavia, IL, U.S.A., 2014) pp. 269--275

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Mancusi.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancusi, D., Lo Meo, S., Colonna, N. et al. On the role of secondary pions in spallation targets. Eur. Phys. J. A 53, 80 (2017). https://doi.org/10.1140/epja/i2017-12263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12263-0

Navigation